ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold-atom based implementation of the quantum Rabi model

108   0   0.0 ( 0 )
 نشر من قبل Philipp Schneeweiss
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of a two-level system (TLS) with a single bosonic mode is one of the most fundamental processes in quantum optics. Microscopically, it is described by the quantum Rabi model (QRM). Here, we propose an implementation of this model based on single trapped cold atoms. The TLS is implemented using atomic Zeeman states, while the atoms vibrational states in the trap represent the bosonic mode. The coupling is mediated by a suitable fictitious magnetic field pattern. We show that all important system parameters, i.e., the emitter-field detuning and the coupling strength of the emitter to the mode, can be tuned over a wide range. Remarkably, assuming realistic experimental conditions, our approach allows one to explore the regimes of ultra-strong coupling, deep strong coupling, and dispersive deep strong coupling. The states of the bosonic mode and the TLS can be prepared and read out using standard cold-atom techniques. Moreover, we show that our scheme enables the implementation of important generalizations, namely, the driven QRM, the QRM with quadratic coupling as well as the case of many TLSs coupled to one mode (Dicke model). The proposed cold-atom based implementation will facilitate experimental studies of a series of phenomena predicted for the QRM in extreme, so far unexplored physical regimes.

قيم البحث

اقرأ أيضاً

We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the ca se where both light-matter $g$-coupling and system-bath interaction are in the ultrastrong coupling regime. We provide a critical $g$ for the onset of Rabi oscillations. Besides, we demonstrate that the qubit is emph{dressed} by the cavity and dissipation. That such dressing governs the dynamics and, thus, it can be measured. Finally, we sketch an implementation for our theoretical ideas within circuit QED technology.
We demonstrate the emergence of selective $k$-photon interactions in the strong and ultrastrong coupling regimes of the quantum Rabi model with a Stark coupling term. In particular, we show that the interplay between the rotating and counter-rotating terms produces multi-photon interactions whose resonance frequencies depend, due to the Stark term, on the state of the bosonic mode. We develop an analytical framework to explain these $k$-photon interactions by using time-dependent perturbation theory. Finally, we propose a method to achieve the quantum simulation of the quantum Rabi model with a Stark term by using the internal and vibrational degrees of freedom of a trapped ion, and demonstrate its performance with numerical simulations considering realistic physical parameters.
The isoenergetic cycle is a purely mechanical cycle comprised of adabatic and isoenergetic processes. In the latter the system interacts with an energy bath keeping constant the expectation value of the Hamiltonian. This cycle has been mostly studied in systems consisting of particles confined in a power-law trap. In this work we study the performance of the isoenergetic cycle for a system described by the quantum Rabi model for the case of controlling the coupling strength parameter, the resonator frequency and the two-level system frequency. For the cases of controlling either the coupling strength parameter or the resonator frequency, we find that it is possible to reach maximal unit efficiency when the parameter is sufficiently increased in the first adiabatic stage. In addition, for the first two cases the maximal work extracted is obtained at parameter values corresponding to high efficiency which constitutes an improvement over current proposals of this cycle.
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro ng coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.
103 - Lei Cong , Xi-Mei Sun , Maoxin Liu 2018
We employ a polaron picture to investigate the properties of the two-photon quantum Rabi model (QRM), which describes a two-level or spin-half system coupled with a single bosonic mode by a two-photon process. In the polaron picture, the coupling in the two-photon process leads to spin-related asymmetry so that the original single bosonic mode splits into two separated frequency modes for the opposite spins, which correspond to two textit{bare} polarons. Furthermore, the tunneling causes these two bare polarons to exchange their components with each other, thus leading to additional textit{induced} polarons. According to this picture, the variational ground-state wave function of the two-photon QRM can be correctly constructed, with the ground-state energy and other physical observables in good agreement with the exact numerics in all the coupling regimes. Furthermore, generalization to multiple induced polarons involving higher orders in the tunneling effect provides a systematic way to yield a rapid convergence in accuracy even around the difficult spectral collapse point. In addition, the polaron picture provides a distinctive understanding of the spectral collapse behavior, that is about the existence of discrete energy levels apart from the collapsed spectrum at the spectral collapse point. This work illustrates that the polaron picture is helpful to capture the key physics in this nonlinear light-matter interaction model and indicates that this method can be applicable to more complicated QRM-related models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا