ترغب بنشر مسار تعليمي؟ اضغط هنا

Isoenergetic cycle for the quantum Rabi model

101   0   0.0 ( 0 )
 نشر من قبل Gabriel Dario Alvarado Barrios
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The isoenergetic cycle is a purely mechanical cycle comprised of adabatic and isoenergetic processes. In the latter the system interacts with an energy bath keeping constant the expectation value of the Hamiltonian. This cycle has been mostly studied in systems consisting of particles confined in a power-law trap. In this work we study the performance of the isoenergetic cycle for a system described by the quantum Rabi model for the case of controlling the coupling strength parameter, the resonator frequency and the two-level system frequency. For the cases of controlling either the coupling strength parameter or the resonator frequency, we find that it is possible to reach maximal unit efficiency when the parameter is sufficiently increased in the first adiabatic stage. In addition, for the first two cases the maximal work extracted is obtained at parameter values corresponding to high efficiency which constitutes an improvement over current proposals of this cycle.



قيم البحث

اقرأ أيضاً

We present a frequency-renormalized multipolaron expansion method to explore the ground state of quantum Rabi model (QRM). The main idea is to take polaron as starting point to expand the ground state of QRM. The polarons are deformed and displaced o scillator states with variationally determined frequency-renormalization and displacement parameters. This method is an extension of the previously proposed polaron concept and the coherent state expansion used in the literature, which shows high efficiency in describing the physics of the QRM. The proposed method is expected to be useful for solving other more complicated light-matter interaction models.
We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the ca se where both light-matter $g$-coupling and system-bath interaction are in the ultrastrong coupling regime. We provide a critical $g$ for the onset of Rabi oscillations. Besides, we demonstrate that the qubit is emph{dressed} by the cavity and dissipation. That such dressing governs the dynamics and, thus, it can be measured. Finally, we sketch an implementation for our theoretical ideas within circuit QED technology.
We demonstrate the emergence of selective $k$-photon interactions in the strong and ultrastrong coupling regimes of the quantum Rabi model with a Stark coupling term. In particular, we show that the interplay between the rotating and counter-rotating terms produces multi-photon interactions whose resonance frequencies depend, due to the Stark term, on the state of the bosonic mode. We develop an analytical framework to explain these $k$-photon interactions by using time-dependent perturbation theory. Finally, we propose a method to achieve the quantum simulation of the quantum Rabi model with a Stark term by using the internal and vibrational degrees of freedom of a trapped ion, and demonstrate its performance with numerical simulations considering realistic physical parameters.
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro ng coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.
Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an $LC$ resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا