ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy

120   0   0.0 ( 0 )
 نشر من قبل Seonghoon Woo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spintronic devices based on magnetic skyrmions are a promising candidate for next-generation memory applications due to their nanometre-size, topologically-protected stability and efficient current-driven dynamics. Since the recent discovery of room-temperature magnetic skyrmions, there have been reports of current-driven skyrmion displacement on magnetic tracks and demonstrations of current pulse-driven skyrmion generation. However, the controlled annihilation of a single skyrmion at room temperature has remained elusive. Here we demonstrate the deterministic writing and deleting of single isolated skyrmions at room temperature in ferrimagnetic GdFeCo films with a device-compatible stripline geometry. The process is driven by the application of current pulses, which induce spin-orbit torques, and is directly observed using a time resolved nanoscale X-ray imaging technique. We provide a current-pulse profile for the efficient and deterministic writing and deleting process. Using micromagnetic simulations, we also reveal the microscopic mechanism of the topological fluctuations that occur during this process.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are topologically-protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic s kyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100 nm-size magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.
Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate the single ultrafast (35-fs) laser pulse-induced generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature. The skyrmion bubble density increases with the laser fluence in a controlled way, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.
Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM) we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10,GHz and a spatial resolution down to 20,nm at two different synchrotr ons. We present different methods to separate the contribution of the background from the dynamic magnetic contrast based on the X-ray magnetic circular dichroism (XMCD) effect. The relative phase between the GHz microwave excitation and the X-ray pulses generated by the synchrotron, as well as the opening angle of the precession at FMR can be quantified. A detailed analysis for homogeneous and inhomogeneous magnetic excitations demonstrates that the dynamic contrast indeed behaves as the usual XMCD effect. The dynamic magnetic contrast in time-resolved STXM has the potential be a powerful tool to study the linear and non-linear magnetic excitations in magnetic micro- and nano-structures with unique spatial-temporal resolution in combination with element selectivity.
Using a time-resolved magneto-optical Kerr effect (TR-MOKE) microscope, we observed ultrafast demagnetization of inverse-spinel-type NiCo2O4 (NCO) epitaxial thin films of the inverse spinel type ferrimagnet NCO with perpendicular magnetic anisotropy. This microscope uses a pump-probe method, where the sample is pumped at 1030 nm, and magnetic domain images are acquired via MOKE microscopy at 515 nm (the second harmonic). We successfully observed the dynamics of the magnetic domain of the NCO thin film via laser irradiation, and obtained a demagnetization time constant of approximately 0.4 ps. This time constant was significantly smaller than the large time constants reported for other half-metallic oxides. These results, combined with the results of our x-ray photoemission spectroscopy study, indicate that this NCO thin film is a ferrimagnetic metal whose electronic structure deviates from the theoretically predicted half-metallic one.
The high-pressure phase stability of the metastable tetragonal zirconia is still under debate. The transition dynamics of shocked Y2O3 (3 mol%) stabilized tetragonal zirconia ceramics under laser-shock compression has been directly studied using nano second time-resolved X-ray diffraction. The martensitic phase transformation to the monoclinic phase, which is the stable phase for pure zirconia at ambient pressure and room temperature, has been observed during compression at 5 GPa within 20 ns without any intermediates. This monoclinic phase reverts back to the tetragonal phase during pressure release. The results imply that the stabilization effect due to addition of Y2O3 is negated by the shear stress under compression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا