ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films

143   0   0.0 ( 0 )
 نشر من قبل Soong-Geun Je
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate the single ultrafast (35-fs) laser pulse-induced generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature. The skyrmion bubble density increases with the laser fluence in a controlled way, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.


قيم البحث

اقرأ أيضاً

86 - I. Gross , W. Akhtar , A. Hrabec 2017
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including static disorder, based on a physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.
94 - P. Zhang , A. Das , E. Barts 2020
Topological spin textures in an itinerant ferromagnet, SrRuO$_3$ is studied combining Hall transport measurements and numerical simulations. We observe characteristic signatures of the Topological Hall Effect associated with skyrmions. A relatively l arge thickness of our films and absence of heavy metal layers make the interfacial Dzyaloshinskii-Moriya interaction an unlikely source of these topological spin textures. Additionally, the transport anomalies exhibit an unprecedented robustness to magnetic field tilting and temperature. Our numerical simulations suggest that this unconventional behavior results from magnetic bubbles with skyrmion topology stabilized by magnetodipolar interactions in an unexpected region of parameter space.
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Similar behavior is seen for spin-torques due to in-plane currents and the spin Hall effect, where a pinning regime can be identified at low currents with a transition towards the disorder-free case at higher currents, similar to domain wall motion in disordered films. Moreover, a current-dependent skyrmion Hall effect and fluctuations in the core radius are found, which result from the interaction with the pinning potential.
We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interf aces, it is found that the DMI in latter increases as a function of Co thickness and beyond three monolayers stabilizes with one order of magnitude larger values compared to those at graphene/Co, where the DMI shows opposite decreasing behavior. At the same time, the PMA for both systems shows similar trends with larger values for graphene/Co and no significant variations for all thickness ranges of Co. Furthermore, using micromagnetic simulations we demonstrate that such significant DMI and PMA values remaining stable over large range of Co thickness give rise to formation of skyrmions with small applied external fields in the range of 200-250 mT up to 100 K temperatures. These findings open up further possibilities towards integrating two-dimensional (2D) materials in spin-orbitronics devices.
Competing interactions produce finite-size textures in myriad condensed matter systems, typically forming elongated stripe or round bubble domains. Transitions between stripe and bubble phases, driven by field or temperature, are expected to be rever sible in nature. Here we report on the distinct character of the analogous transition for nanoscale spin textures in chiral Co/Pt-based multilayer films, known to host N{e}el skyrmions, using microscopy, magnetometry, and micromagnetic simulations. Upon increasing field, individual stripes fission into multiple skyrmions, and this transition exhibits a macroscopic signature of irreversibility. Crucially, upon field reversal, the skyrmions do not fuse back into stripes, with many skyrmions retaining their morphology down to zero field. Both the macroscopic irreversibility and the microscopic zero-field skyrmion density are governed by the thermodynamic material parameter determining chiral domain stability. These results establish the thermodynamic and microscopic framework underlying ambient skyrmion generation and stability in chiral multilayer films and provide immediate directions for their functionalization in devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا