ترغب بنشر مسار تعليمي؟ اضغط هنا

In situ characterization of qubit control lines: a qubit as a vector network analyzer

62   0   0.0 ( 0 )
 نشر من قبل Arkady Fedorov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a technique to measure the transfer function of a control line using a qubit as a vector network analyzer. Our method requires coupling the line under test to the the longitudinal component of the Hamiltonian of the qubit and the ability to induce Rabi oscillations through simultaneous driving of the transversal component. We used this technique to characterize the flux control of a superconducting Transmon qubit in the range of 8 to 400,MHz. Our method can be used for the qubit flux line calibration to increase the fidelity of entangling gates for the quantum processor. The qubit can be also used as a microscopic probe of the electro-magnetic fields on a chip.



قيم البحث

اقرأ أيضاً

Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous va lues of the quadratures of the measured fluorescence field, we show that it is possible to stabilize permanently the qubit in any targeted state. Using a Josephson mixer as a phase-preserving amplifier, it was possible to reach a total measurement efficiency $eta$=35%, leading to a maximum of 59% of excitation and 44% of coherence for the stabilized states. The experiment demonstrates multiple-input multiple-output analog Markovian feedback in the quantum regime.
We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences we present have a simple form, are relatively short, and form the building blocks of a corrected CNOT gate when also implemented on the inter-qubit exchange link. This is a key step towards enabling large-scale quantum computation in a semiconductor-based architecture by facilitating error reduction below the quantum error correction threshold for both single-qubit and multi-qubit gate operations.
A central challenge for implementing quantum computing in the solid state is decoupling the qubits from the intrinsic noise of the material. We investigate the implementation of quantum gates for a paradigmatic, non-Markovian model: A single qubit co upled to a two-level system that is exposed to a heat bath. We systematically search for optimal pulses using a generalization of the novel open systems Gradient Ascent Pulse Engineering (GRAPE) algorithm. We show and explain that next to the known optimal bias point of this model, there are optimal shapes which refocus unwanted terms in the Hamiltonian. We study the limitations of controls set by the decoherence properties. This can lead to a significant improvement of quantum operations in hostile environments.
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks where information can be encoded in multiple temporal modes of propagating microwaves. Characterization of such microwave signals with a method ex tendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of great interest. Here we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by dynamically changing the measurement quadrature with a phase-sensitive amplifier independently for the two temporal modes. By generating and measuring the qubits with hardware lacking a shared phase reference, we demonstrate conservation of phase information in each time-bin qubit generated.
The textit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration point. However, the suppressed charge matrix elements and low transiti on frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with $97$% fidelity, corresponding to cooling it to $190~mathrm{mu K}$. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with $T_1, T_{2e}sim$~300~$mathrm{mu s}$, we realize single-qubit gates in $20-60$~ns with an average gate fidelity of $99.8%$ as characterized by randomized benchmarking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا