ﻻ يوجد ملخص باللغة العربية
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks where information can be encoded in multiple temporal modes of propagating microwaves. Characterization of such microwave signals with a method extendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of great interest. Here we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by dynamically changing the measurement quadrature with a phase-sensitive amplifier independently for the two temporal modes. By generating and measuring the qubits with hardware lacking a shared phase reference, we demonstrate conservation of phase information in each time-bin qubit generated.
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example, by monitoring for photon loss at the receiving end of the qua
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medi
Time-bin entangled photons are ideal for long-distance quantum communication via optical fibers. Here we present a source where, even at high creation rates, each excitation pulse generates at most one time-bin entangled pair. This is important for t
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon artificial atom coupled to a large bandwidth resonator. The res
Defects in silicon carbide have been explored as promising spin systems in quantum technologies. However, for practical quantum metrology and quantum communication, it is critical to achieve the on-demand shallow spin-defect generation. In this work,