ﻻ يوجد ملخص باللغة العربية
We propose ThalNet, a deep learning model inspired by neocortical communication via the thalamus. Our model consists of recurrent neural modules that send features through a routing center, endowing the modules with the flexibility to share features over multiple time steps. We show that our model learns to route information hierarchically, processing input data by a chain of modules. We observe common architectures, such as feed forward neural networks and skip connections, emerging as special cases of our architecture, while novel connectivity patterns are learned for the text8 compression task. Our model outperforms standard recurrent neural networks on several sequential benchmarks.
In federated learning, models trained on local clients are distilled into a global model. Due to the permutation invariance arises in neural networks, it is necessary to match the hidden neurons first when executing federated learning with neural net
Recurrent neural networks (RNNs), including long short-term memory (LSTM) RNNs, have produced state-of-the-art results on a variety of speech recognition tasks. However, these models are often too large in size for deployment on mobile devices with m
Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains such as speech recognition, machine translation, and language modelling. Sparsity is a technique to reduce compute and memory requirements of deep learning models. Sparse
We tackle the problem of generalization to unseen configurations for dynamic tasks in the real world while learning from high-dimensional image input. The family of nonlinear dynamical system-based methods have successfully demonstrated dynamic robot
Botnet detection is a critical step in stopping the spread of botnets and preventing malicious activities. However, reliable detection is still a challenging task, due to a wide variety of botnets involving ever-increasing types of devices and attack