ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Botnet Detection with Recurrent Neural Network and Transfer Learning

493   0   0.0 ( 0 )
 نشر من قبل Alex Sim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Botnet detection is a critical step in stopping the spread of botnets and preventing malicious activities. However, reliable detection is still a challenging task, due to a wide variety of botnets involving ever-increasing types of devices and attack vectors. Recent approaches employing machine learning (ML) showed improved performance than earlier ones, but these ML- based approaches still have significant limitations. For example, most ML approaches can not incorporate sequential pattern analysis techniques key to detect some classes of botnets. Another common shortcoming of ML-based approaches is the need to retrain neural networks in order to detect the evolving botnets; however, the training process is time-consuming and requires significant efforts to label the training data. For fast-evolving botnets, it might take too long to create sufficient training samples before the botnets have changed again. To address these challenges, we propose a novel botnet detection method, built upon Recurrent Variational Autoencoder (RVAE) that effectively captures sequential characteristics of botnet activities. In the experiment, this semi-supervised learning method achieves better detection accuracy than similar learning methods, especially on hard to detect classes. Additionally, we devise a transfer learning framework to learn from a well-curated source data set and transfer the knowledge to a target problem domain not seen before. Tests show that the true-positive rate (TPR) with transfer learning is higher than the RVAE semi-supervised learning method trained using the target data set (91.8% vs. 68.3%).

قيم البحث

اقرأ أيضاً

286 - Jeeyung Kim , Alex Sim , Jinoh Kim 2020
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users. To address this growing danger, we propose to study methods to detect botnets, especially those that are hard to capture with the commo nly used methods, such as the signature based ones and the existing anomaly-based ones. More specifically, we propose a novel machine learning based method, named Recurrent Variational Autoencoder (RVAE), for detecting botnets through sequential characteristics of network traffic flow data including attacks by botnets. We validate robustness of our method with the CTU-13 dataset, where we have chosen the testing dataset to have different types of botnets than those of training dataset. Tests show that RVAE is able to detect botnets with the same accuracy as the best known results published in literature. In addition, we propose an approach to assign anomaly score based on probability distributions, which allows us to detect botnets in streaming mode as the new networking statistics becomes available. This on-line detection capability would enable real-time detection of unknown botnets.
The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the I nternet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN_IoT dataset according to IoT devices IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.
90 - Yaqin Li , Yongjin Xu , Yi Yu 2021
In this study, we propose the convolutional recurrent neural network and transfer learning (CRNNTL) for QSAR modelling. The method was inspired by the applications of polyphonic sound detection and electrocardiogram classification. Our strategy takes advantages of both convolutional and recurrent neural networks for feature extraction, as well as the data augmentation method. Herein, CRNNTL is evaluated on 20 benchmark datasets in comparison with baseline methods. In addition, one isomers based dataset is used to elucidate its ability for both local and global feature extraction. Then, knowledge transfer performance of CRNNTL is tested, especially for small biological activity datasets. Finally, different latent representations from other type of AEs were used for versatility study of our model. The results show the effectiveness of CRNNTL using different latent representation. Moreover, efficient knowledge transfer is achieved to overcome data scarcity considering binding site similarity between different targets.
Learning powerful data embeddings has become a center piece in machine learning, especially in natural language processing and computer vision domains. The crux of these embeddings is that they are pretrained on huge corpus of data in a unsupervised fashion, sometimes aided with transfer learning. However currently in the graph learning domain, embeddings learned through existing graph neural networks (GNNs) are task dependent and thus cannot be shared across different datasets. In this paper, we present a first powerful and theoretically guaranteed graph neural network that is designed to learn task-independent graph embeddings, thereafter referred to as deep universal graph embedding (DUGNN). Our DUGNN model incorporates a novel graph neural network (as a universal graph encoder) and leverages rich Graph Kernels (as a multi-task graph decoder) for both unsupervised learning and (task-specific) adaptive supervised learning. By learning task-independent graph embeddings across diverse datasets, DUGNN also reaps the benefits of transfer learning. Through extensive experiments and ablation studies, we show that the proposed DUGNN model consistently outperforms both the existing state-of-art GNN models and Graph Kernels by an increased accuracy of 3% - 8% on graph classification benchmark datasets.
119 - Yiwen Sun , Yulu Wang , Kun Fu 2020
Considering deep sequence learning for practical application, two representative RNNs - LSTM and GRU may come to mind first. Nevertheless, is there no chance for other RNNs? Will there be a better RNN in the future? In this work, we propose a novel, succinct and promising RNN - Fusion Recurrent Neural Network (Fusion RNN). Fusion RNN is composed of Fusion module and Transport module every time step. Fusion module realizes the multi-round fusion of the input and hidden state vector. Transport module which mainly refers to simple recurrent network calculate the hidden state and prepare to pass it to the next time step. Furthermore, in order to evaluate Fusion RNNs sequence feature extraction capability, we choose a representative data mining task for sequence data, estimated time of arrival (ETA) and present a novel model based on Fusion RNN. We contrast our method and other variants of RNN for ETA under massive vehicle travel data from DiDi Chuxing. The results demonstrate that for ETA, Fusion RNN is comparable to state-of-the-art LSTM and GRU which are more complicated than Fusion RNN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا