ترغب بنشر مسار تعليمي؟ اضغط هنا

Development and Operation of a Pr2Fe14B Based Cryogenic Permanent Magnet Undulator for a High Spatial Resolution X-ray Beamline

200   0   0.0 ( 0 )
 نشر من قبل Amin Ghaith Amin Ghaith
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Short period, high field undulators are used to produce hard X-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength Free Electron Laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the Spin Reorientation Transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

قيم البحث

اقرأ أيضاً

Intense laser-driven proton pulses, inherently broadband and highly divergent, pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for 3D. Here we experimentally show the succ essful implementation of a highly efficient (50% transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous (8.5% uniformity laterally and in depth) volumetric dose distribution (cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7 Gy via multi-energy slice selection from the broad input spectrum. The experiments have been conducted at the Petawatt beam of the Dresden Laser Acceleration Source Draco and were aided by a predictive simulation model verified by proton transport studies. With the characterised beamline we investigated manipulation and matching of lateral and depth dose profiles to various desired applications and targets. Using a specifically adapted dose profile, we successfully performed first proof-of-concept laser-driven proton irradiation studies of volumetric in-vivo normal tissue (zebrafish embryos) and in-vitro tumour tissue (SAS spheroids) samples.
In anticipation of the increased use of coherent x-ray methods and the need to upgrade beamlines to match improved source quality, we have characterized the coherence properties of the x-rays delivered by beamline 12ID-D at the Advanced Photon Source . We compare the measured x-ray divergence, beam size, brightness, and coherent flux at energies up to 26 keV to the calculated values from the undulator source, and evaluate the effects of beamline optics such as a mirror, monochromator, and compound refractive lenses. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory to obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator (pink beam) agree well with those calculated for the source, those measured with the monochromator were a factor of 3 to 6 lower than the source, primarily because of vertical divergence introduced by the monochromator. The methods we describe should be widely applicable for measuring the x-ray coherence properties of synchrotron beamlines.
High gradient quadrupoles are necessary for different applications such as laser plasma acceleration, colliders, and diffraction limited light sources. Permanent magnet quadrupoles provide a higher field strength and compactness than conventional ele ctro-magnets. An original design of permanent magnet based quadrupole (so-called QUAPEVA), composed of a Halbach ring placed in the center with a bore radius of 6 mm and surrounded by four permanent magnet cylinders capable of providing a gradient of 210 T/m, is presented. The design of the QUAPEVAs, including magnetic simulation modeling, and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is +/- 10 micrometer. A triplet of three QUAPEVA magnets are used to focus a beam with large energy spread and high divergence that is generated by Laser Plasma Acceleration source for a free electron laser demonstration.
We study the tapering optimization scheme for a short period, less than two cm, superconducting undulator, and show that it can generate 4 keV X-ray pulses with peak power in excess of 1 terawatt, using LCLS electron beam parameters. We study the eff ect of undulator module length relative to the FEL gain length for continous and step-wise taper profiles. For the optimal section length of 1.5m we study the evolution of the FEL process for two different superconducting technologies NbTi and Nb3Sn. We discuss the major factors limiting the maximum output power, particle detrapping around the saturation location and time dependent detrapping due to generation and amplification of sideband modes.
We are proposing a facility based on high gradient acceleration via x-band RF structures and plasma acceleration. We plan to reach an electron energy of the order of 1 GeV, suitable to drive a Free Electron Laser for applications in the so called wat er window (2 - 4 nm). A conceptual design of the beamline, from the photon beam from the undulators to the user experimental chamber, mainly focusing on diagnostic, manipulation and transport of the radiation is presented and discussed. We also briefly outline a user end station for coherent imaging, laser ablation and pump-probe experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا