ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric splitting of an antiferromagnetic resonance via quartic exchange interactions in multiferroic hexagonal HoMnO$_3$

129   0   0.0 ( 0 )
 نشر من قبل Nicholas Laurita
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The symmetric splitting of two spin-wave branches in an antiferromagnetic resonance (AFR) experiment has been an essential measurement of antiferromagnets for over half a century. In this work, circularly polarized time-domain THz spectroscopy experiments performed on the low symmetry multiferroic h-HoMnO$_3$ reveal an AFR of the Mn sublattice to split asymmetrically in applied magnetic field, with an $approx$ 50% difference in $g$-factors between the high and low energy branches of this excitation. The temperature dependence of the $g$-factors, including a drastic renormalization at the Ho spin ordering temperature, reveals this asymmetry to unambiguously stem from Ho-Mn interactions. Theoretical calculations demonstrate the AFR asymmetry is not explained by conventional Ho-Mn exchange mechanisms alone and are only reproduced if quartic spin interactions are also included in the spin Hamiltonian. Our results provide a paradigm for the optical study of such novel interactions in hexagonal manganites and low symmetry antiferromagnets in general.



قيم البحث

اقرأ أيضاً

We demonstrate a new approach for directly measuring the ultrafast energy transfer between elec- trons and magnons, enabling us to track spin dynamics in an antiferromagnet (AFM). In multiferroic HoMnO3, optical photoexcitation creates hot electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced transparency, which builds up over several picoseconds as the spins heat up due to energy transfer from hot elec- trons via phonons. This spin-lattice thermalization time is ?10 times faster than that of typical ferromagnetic (FM) manganites. We qualitatively explain the fundamental differences in spin-lattice thermalization between FM and AFM systems and apply a Boltzmann equation model for treating AFMs. Our work gives new insight into spin-lattice thermalization in AFMs and demonstrates a new approach for directly monitoring the ultrafast dynamics of spin order in these systems.
293 - C M N Kumar , Y Xiao , H S Nair 2016
We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO$_3$. We have performed specific heat measurements in the temperature range 100 mK - 290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5 - 200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) $mu$eV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO$_3$. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term $gamma=6.3(8)$ mJmol$^{-1}$K$^{-2}$ in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, $sim$$17.2$ Jmol$^{-1}$K$^{-1}$ and $sim$34 Jmol$^{-1}$K$^{-1}$, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho$^{3+}$ and ferroelectricity in HoCrO$_3$. Our present study along with recent reports confirm that HoCrO$_3$, and $R$CrO$_3$ ($R=$ Rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortio n of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.
We report measurements of optical absorption in the zig-zag antiferromagnet $alpha$-RuCl$_3$ as a function of temperature, $T$, magnetic field, $B$, and photon energy, $hbaromega$ in the range $sim$ 0.3 to 8.3 meV, using time-domain terahertz spectro scopy. Polarized measurements show that 3-fold rotational symmetry is broken in the honeycomb plane from 2 K to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Neel temperature of 7 K at $B=0$ that we identify as magnetic-dipole excitation of a zero-wavevector magnon, or antiferromagnetic resonance (AFMR). With application of $B$, the AFMR broadens and shifts to lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the $dc$ susceptibility from a magnetic excitation continuum.
In this paper we report low-temperature magnetic properties of the rare-earth perovskite material YbAlO$_3$. Results of elastic and inelastic neutron scattering experiment, magnetization measurements along with the crystalline electrical field (CEF) calculations suggest that the ground state of Yb moments is a strongly anisotropic Kramers doublet, and the moments are confined in the $ab$-plane, pointing at an angle of $varphi = pm 23.5^{circ}$ to the $a$-axis. With temperature decreasing below $T_{rm N}=0.88$ K, Yb moments order into the coplanar, but non-collinear antiferromagnetic (AFM) structure $AxGy$, where the moments are pointed along their easy-axes. In addition, we highlight the importance of the dipole-dipole interaction, which selects the type of magnetic ordering and may be crucial for understanding magnetic properties of other rare-earth orthorhombic perovskites. Further analysis of the broad diffuse neutron scattering shows that one-dimensional interaction along the $c$-axis is dominant, and suggests YbAlO$_3$ as a new member of one dimensional quantum magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا