ﻻ يوجد ملخص باللغة العربية
In this paper we report low-temperature magnetic properties of the rare-earth perovskite material YbAlO$_3$. Results of elastic and inelastic neutron scattering experiment, magnetization measurements along with the crystalline electrical field (CEF) calculations suggest that the ground state of Yb moments is a strongly anisotropic Kramers doublet, and the moments are confined in the $ab$-plane, pointing at an angle of $varphi = pm 23.5^{circ}$ to the $a$-axis. With temperature decreasing below $T_{rm N}=0.88$ K, Yb moments order into the coplanar, but non-collinear antiferromagnetic (AFM) structure $AxGy$, where the moments are pointed along their easy-axes. In addition, we highlight the importance of the dipole-dipole interaction, which selects the type of magnetic ordering and may be crucial for understanding magnetic properties of other rare-earth orthorhombic perovskites. Further analysis of the broad diffuse neutron scattering shows that one-dimensional interaction along the $c$-axis is dominant, and suggests YbAlO$_3$ as a new member of one dimensional quantum magnets.
Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations,
Antiferromagnetic order at $T_{mathrm{N}} = 23$ K has been identified in Mn(III)F(salen), salen = H$_{14}$C$_{16}$N$_2$O$_2$, an $S = 2$ linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed
Polycrystalline CuO samples with Co doping were prepared by solid state method with flowing oxygen condition and examined their structural and multiferroic properties. Structural studies have confirmed single phase monoclinic crystal structure of all
Ac and dc magnetization and heat-capacity (C) measurements performed on the pseudo-one-dimensional compound Sr$_3$CuIrO$_6$ reveal a competition between antiferromagnetic (AF) and ferromagnetic (F) exchange couplings, as evidenced by frequency depend
Motivated by recent progress on field-induced phase transitions in quasi-one-dimensional quantum antiferromagnets, we study the phase diagram of $S=1/2$ antiferromagnetic Heisenberg chains with Ising anisotropic interchain couplings under a longitudi