ﻻ يوجد ملخص باللغة العربية
We demonstrate a new approach for directly measuring the ultrafast energy transfer between elec- trons and magnons, enabling us to track spin dynamics in an antiferromagnet (AFM). In multiferroic HoMnO3, optical photoexcitation creates hot electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced transparency, which builds up over several picoseconds as the spins heat up due to energy transfer from hot elec- trons via phonons. This spin-lattice thermalization time is ?10 times faster than that of typical ferromagnetic (FM) manganites. We qualitatively explain the fundamental differences in spin-lattice thermalization between FM and AFM systems and apply a Boltzmann equation model for treating AFMs. Our work gives new insight into spin-lattice thermalization in AFMs and demonstrates a new approach for directly monitoring the ultrafast dynamics of spin order in these systems.
The symmetric splitting of two spin-wave branches in an antiferromagnetic resonance (AFR) experiment has been an essential measurement of antiferromagnets for over half a century. In this work, circularly polarized time-domain THz spectroscopy experi
In the multiferroic hexagonal manganite HoMnO3, inelastic neutron scattering and synchrotron based THz spectroscopy have been used to investigate the spin waves associated to the Mn order together with Ho crystal field excitations. While the Mn order
NiNb$_{2}$O$_{6}$ is an almost ideal realization of a 1D spin-1 ferromagnetic Heisenberg chain compound with weak unidirectional anisotropy. Using time-domain THz spectroscopy, we measure the low-energy electrodynamic response of NiNb$_{2}$O$_{6}$ as
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortio
Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO$_3$. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the $(a,b)$-pla