ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear relativistic contributions to the cosmological weak-lensing convergence

93   0   0.0 ( 0 )
 نشر من قبل Sambatra Andrianomena
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simulations, so it is important to accurately estimate the magnitude of these relativistic effects. Density fluctuations couple to produce a background of gravitational waves, which is larger than any primordial background. A similar interaction produces a much larger spectrum of vector modes which represent the frame-dragging rotation of spacetime. These can change the metric at the percent level in the concordance model at scales below the equality scale. Vector modes modify the lensing of background galaxies by large-scale structure. This gives in principle the exciting possibility of measuring relativistic frame dragging effects on cosmological scales. The effects of the non-linear tensor and vector modes on the cosmic convergence are computed and compared to first-order lensing contributions from density fluctuations, Doppler lensing, and smaller Sachs-Wolfe effects. The lensing from gravitational waves is negligible so we concentrate on the vector modes. We show the relative importance of this for future surveys such as Euclid and SKA. We find that these non-linear effects only marginally affect the overall weak lensing signal so they can safely be neglected in most analyses, though are still much larger than the linear Sachs-Wolfe terms. The second-order vector contribution can dominate the first-order Doppler lensing term at moderate redshifts and are actually more important for survey geometries like the SKA.



قيم البحث

اقرأ أيضاً

We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations -- scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.
Einsteins theory of General Relativity implies that energy, i.e. matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric, and has been accurately described in the past; however, lensing in the Kerr space-time has received less attention in the literature despite potential practical observational applications. In particular, lensing in such space is not expressible as the gradient of a scalar potential and as such is a source of curl-like signatures and an asymmetric shear pattern. In this paper, we develop a differentiable lensing map in the Kerr metric, reworking and extending previous approaches. By using standard tools of weak gravitational lensing, we isolate and quantify the distortion that is uniquely induced by the presence of angular momentum in the metric. We apply this framework to the distortion induced by a Kerr-like foreground object on a distribution of background of sources. We verify that the new unique lensing signature is orders of magnitude below current observational bounds for a range of lens configurations.
We propose in this letter a relativistic coordinate independent interpretation for Milgroms acceleration $a_{0}=1.2 times 10^{-8} hbox{cm/s}^{2}$ through a geometric constraint obtained from the product of the Kretschmann invariant scalar times the s urface area of 2--spheres defined through suitable characteristic length scales for local and cosmic regimes, described by Schwarzschild and Friedman--Lema^i tre--Robertson--Walker (FLRW) geometries, respectively. By demanding consistency between these regimes we obtain an appealing expression for the empirical (so far unexplained) relation between the accelerations $a_0$ and $c H_0$. Imposing this covariant geometric criterion upon a FLRW model, yields a dynamical equation for the Hubble scalar whose solution matches, to a very high accuracy, the cosmic expansion rate of the $Lambda$CDM concordance model fit for cosmic times close to the present epoch. We believe that this geometric interpretation of $a_0$ could provide relevant information for a deeper understanding of gravity
We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Uni verse evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/r^n fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n=1) and the Ellis wormhole (n=2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا