ﻻ يوجد ملخص باللغة العربية
In this concluding article I recall the early history of the Gaia mission, showing that the original science case and expectations of wide community interest in Gaia data have been met. The quarter-century long partnership involving some 1,000 scientists, engineers and managers in industry and academia is delivering a large, high-quality and unique data set which will underpin astrophysics across many sub-fields for years to come.
Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997)
The recent discoveries of gravitational wave events and in one case also its electromagnetic (EM) counterpart allow us to study the Universe in a novel way. The increased sensitivity of the LIGO and Virgo detectors has opened the possibility for regu
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve
Combined studies of variable stars and stellar clusters open great horizons, and they allow us to improve our understanding of stellar cluster formation and stellar evolution. In that prospect, the Gaia mission will provide astrometric, photometric,
Aims: An effort has been undertaken to simulate the expected Gaia Catalogue, including the effect of observational errors. A statistical analysis of this simulated Gaia data is performed in order to better understand what can be obtained from the Gai