ﻻ يوجد ملخص باللغة العربية
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaias CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaias overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvacos physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the effect of different doping approximations.
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will ac
The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors which will suffer from increased charge transfer inefficiency (CTI) as a result of radiation damage. To aid the mitigation at low signal levels, the CCD design includes Suppleme
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve
Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia:
We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the Astro-H satellite. The device was exposed up to 10^9 protons cm^{-2} at 6.7 MeV. The charge transfer inefficiency (CTI) was measure