ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids

60   0   0.0 ( 0 )
 نشر من قبل Suresh Mavila Chathoth
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The precise nature of complex structural relaxation as well as an explanation for the precipitous growth of relaxation time in cooling glass-forming liquids are essential to the understanding of vitrification of liquids. The dramatic increase of relaxation time is believed to be caused by the growth of one or more correlation lengths, which has received much attention recently. Here, we report a direct link between the growth of a specific local-geometrical-order and an increase of dynamic-length-scale as the atomic dynamics in metallic glass-forming liquids slow down. Although several types of local geometrical-orders are present in these metallic liquids, the growth of icosahedral ordering is found to be directly related to the increase of the dynamic-length-scale. This finding suggests an intriguing scenario that the transient icosahedral ordering could be the origin of the dynamic-length-scale in metallic glass-forming liquids.



قيم البحث

اقرأ أيضاً

If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the wa y liquids relax as they approach the glass transition, rapid or slow variation in dynamic quantities under moderate temperature changes, and a simple means to quantify such variations is provided by the concept of fragility. Here, we report molecular dynamics simulations of a typical network-forming glass, Ge-Se, and find that the relaxation behaviour of the supercooled liquid is strongly correlated to the variation of rigidity with temperature and the spatial distribution of the corresponding topological constraints which, ultimately connect to fragility minima. This permits extending the fragility concept to aspects of topology/rigidity, and to the degree of homogeneity of the atomic-sale interactions for a variety of structural glasses.
67 - Bo Li , Kai Lou , Walter Kob 2019
The glass is a disordered solid that processes distinct dynamical and elastic properties compared with crystal. How heterogeneous glassy materials can be and to what extent dynamics is encoded with structure and elasticity are long-standing puzzles i n glass science. In this experiment, we probed the responses of binary colloidal glasses towards the excitations induced by highly focused laser pulses. We observed very similar excitation patterns when the laser was repeated in the linear region; directly proving that the dynamical heterogeneity is strongly encoded with structure. In the non-linear region, we identified a non-monotonic dynamical length scale as a function of area fraction, resulting from the non-monotonic coupling of momentum transfer in radial and orthogonal directions. Surprisingly, the excitation size and radius of gyration conformed to a universal scaling relation that covered both linear and non-linear regions. Our experiments offered a new strategy of actively probing the response of glassy materials on the microscopic level.
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha t relaxation changes from a power-law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field $p$-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a non-trivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures. We demonstrate that this apparent evolution is controlled by a temperature-dependent population of localised excitations. Our work unifies several recent lines of studies aiming at a detailed characterization of the complex potential energy landscape of glass-formers.
413 - P. Gadige , S. Albert , M. Mich 2017
This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three inde pendent cubic susceptibilities have very similar frequency and temperature dependences, both for their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these non-linear susceptibilities. We show that the framework proposed by two of us [BB, Phys. Rev. B 72, 064204 (2005)], where the growth of non-linear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models, and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments which should deepen our understanding of glasses.
56 - J.R. Rabeau , Y. Fan , P. John 2004
This paper presents findings from a study of nanocrystalline diamond (NCD) growth in a microwave plasma chemical vapour deposition (CVD) reactor. NCD films were grown using Ar/H2/CH4 and He/H2/CH4 gas compositions. The resulting films were characteri sed using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. Analysis revealed an estimated grain size of the order of 50 nm, growth rates in the range 0.01 to 0.3 um/h and sp3 and sp2 bonded carbon content consistent with that expected for NCD. The C2 Swan band was probed using cavity ring-down spectroscopy (CRDS) to measure the absolute C2 (a) number density in the plasma during diamond film growth. The number density in the Ar/H2/CH4 plasmas was in the range 2 to 4 x 10^12 cm-3, but found to be present in quantities too low to measure in the He/H2/CH4 plasmas. Optical emission spectrometry (OES) was employed to determine the relative densities of the C2 excited state (d) in the plasma. The fact that similar NCD material was grown whether using Ar or He as the carrier gas suggests that C2 does not play a major role in the growth of nanocrystalline diamond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا