ﻻ يوجد ملخص باللغة العربية
The precise nature of complex structural relaxation as well as an explanation for the precipitous growth of relaxation time in cooling glass-forming liquids are essential to the understanding of vitrification of liquids. The dramatic increase of relaxation time is believed to be caused by the growth of one or more correlation lengths, which has received much attention recently. Here, we report a direct link between the growth of a specific local-geometrical-order and an increase of dynamic-length-scale as the atomic dynamics in metallic glass-forming liquids slow down. Although several types of local geometrical-orders are present in these metallic liquids, the growth of icosahedral ordering is found to be directly related to the increase of the dynamic-length-scale. This finding suggests an intriguing scenario that the transient icosahedral ordering could be the origin of the dynamic-length-scale in metallic glass-forming liquids.
If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the wa
The glass is a disordered solid that processes distinct dynamical and elastic properties compared with crystal. How heterogeneous glassy materials can be and to what extent dynamics is encoded with structure and elasticity are long-standing puzzles i
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha
This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three inde
This paper presents findings from a study of nanocrystalline diamond (NCD) growth in a microwave plasma chemical vapour deposition (CVD) reactor. NCD films were grown using Ar/H2/CH4 and He/H2/CH4 gas compositions. The resulting films were characteri