ﻻ يوجد ملخص باللغة العربية
This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, both for their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these non-linear susceptibilities. We show that the framework proposed by two of us [BB, Phys. Rev. B 72, 064204 (2005)], where the growth of non-linear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models, and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments which should deepen our understanding of glasses.
A recently published analytical model, describing and predicting elasticity, viscosity, and fragility of metallic melts, is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coars
If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the wa
The glass is a disordered solid that processes distinct dynamical and elastic properties compared with crystal. How heterogeneous glassy materials can be and to what extent dynamics is encoded with structure and elasticity are long-standing puzzles i
Atomic correlations in a simple liquid in steady-state flow under shear stress were studied by molecular dynamics simulation. The local atomic level strain was determined through the anisotropic pair-density function (PDF). The atomic level strain ha