ﻻ يوجد ملخص باللغة العربية
If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the way liquids relax as they approach the glass transition, rapid or slow variation in dynamic quantities under moderate temperature changes, and a simple means to quantify such variations is provided by the concept of fragility. Here, we report molecular dynamics simulations of a typical network-forming glass, Ge-Se, and find that the relaxation behaviour of the supercooled liquid is strongly correlated to the variation of rigidity with temperature and the spatial distribution of the corresponding topological constraints which, ultimately connect to fragility minima. This permits extending the fragility concept to aspects of topology/rigidity, and to the degree of homogeneity of the atomic-sale interactions for a variety of structural glasses.
A recently published analytical model, describing and predicting elasticity, viscosity, and fragility of metallic melts, is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular
This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three inde
When a liquid is cooled below its melting temperature it usually crystallizes. However, if the quenching rate is fast enough, it is possible that the system remains in a disordered state, progressively losing its fluidity upon further cooling. When t
A Monte Carlo method is used in order to simulate the competition between the molecular relaxation and crystallization times in the formation of a glass. The results show that nucleation is avoided during supercooling and produce self-organization in
The precise nature of complex structural relaxation as well as an explanation for the precipitous growth of relaxation time in cooling glass-forming liquids are essential to the understanding of vitrification of liquids. The dramatic increase of rela