ترغب بنشر مسار تعليمي؟ اضغط هنا

Voltage-Controllable Colossal Magnetocrystalline Anisotropy in Single Layer Transition Metal Dichalcogenides

361   0   0.0 ( 0 )
 نشر من قبل Xuelei Sui
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with large magnetocrystalline anisotropy and strong electric field effects are highly needed to develop new types of memory devices based on electric field control of spin orientations. Instead of using modified transition metal films, we propose that certain monolayer transition metal dichalcogenides are the ideal candidate materials for this purpose. Using density functional calculations, we show that they exhibit not only a large magnetocrystalline anisotropy (MCA), but also colossal voltage modulation under external field. Notably, in some materials like CrSe_2 and FeSe_2, where spins show a strong preference for in-plane orientation, they can be switched to out-of-plane direction. This effect is attributed to the large band character alteration that the transition metal d-states undergo around the Fermi energy due to the electric field. We further demonstrate that strain can also greatly change MCA, and can help to improve the modulation efficiency while combined with an electric field.

قيم البحث

اقرأ أيضاً

Doped transition-metal dichalcogenides monolayers exhibit exciting magnetic properties for the benefit of two-dimensional spintronic devices. Using density functional theory (DFT) incorporating Hubbard-type of correction (DFT$+U$) to account for the electronic correlation, we study the magnetocrystalline anisotropy energy (MAE) characterizing Mn-doped MS$_2$ (M=Mo, W) monolayers. A single isolated Mn dopant exhibits a large perpendicular magnetic anisotropy of 35 meV (8 meV) in the case of Mn-doped WS$_2$ (MoS$_2$) monolayer. This value originates from the Mn in-plane orbitals degeneracy lifting due to the spin-orbit coupling. In pairwise doping, the magnetization easy axis changes to the in-plane direction with a weak MAE compared to single Mn doping. Our results suggest that diluted Mn-doped MS$_2$ monolayers, where the Mn dopants are well separated, could potentially be a candidate for the realization of ultimate nanomagnet units.
86 - Haowei Xu , Hua Wang , Jian Zhou 2021
Nonlinear optical properties, such as bulk photovoltaic effects, possess great potential in energy harvesting, photodetection, rectification, etc. To enable efficient light-current conversion, materials with strong photo-responsivity are highly desir able. In this work, we predict that monolayer Janus transition metal dichalcogenides (JTMDs) in the 1T phase possess colossal nonlinear photoconductivity owing to their topological band mixing, strong inversion symmetry breaking, and small electronic bandgap. 1T JTMDs have inverted bandgaps on the order of 10 meV and are exceptionally responsive to light in the terahertz (THz) range. By first-principles calculations, we reveal that 1T JTMDs possess shift current (SC) conductivity as large as $2300 ~rm nm cdot mu A / V^2$, equivalent to a photo-responsivity of $2800 ~rm mA/W$. The circular current (CC) conductivity of 1T JTMDs is as large as $10^4~ rm nm cdot mu A / V^2$. These remarkable photo-responsivities indicate that the 1T JTMDs can serve as efficient photodetectors in the THz range. We also find that external stimuli such as the in-plane strain and out-of-plane electric field can induce topological phase transitions in 1T JTMDs and that the SC can abruptly flip their directions. The abrupt change of the nonlinear photocurrent can be used to characterize the topological transition and has potential applications in 2D optomechanics and nonlinear optoelectronics.
Quantum conductance calculations on the mechanically deformed monolayers of MoS$_2$ and WS$_2$ were performed using the non-equlibrium Greens functions method combined with the Landauer-B{u}ttiker approach for ballistic transport together with the de nsity-functional based tight binding (DFTB) method. Tensile strain and compression causes significant changes in the electronic structure of TMD single layers and eventually the transition semiconductor-metal occurs for elongations as large as ~11% for the 2D-isotropic deformations in the hexagonal structure. This transition enhances the electron transport in otherwise semiconducting materials.
We demonstrate dynamic voltage control of the magnetic anisotropy of a (Ga,Mn)As device bonded to a piezoelectric transducer. The application of a uniaxial strain leads to a large reorientation of the magnetic easy axis which is detected by measuring longitudinal and transverse anisotropic magnetoresistance coefficients. Calculations based on the mean-field kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the measured effect. Electrically induced magnetization switching and detection of unconventional crystalline components of the anisotropic magnetoresistance are presented, illustrating the generic utility of the piezo voltage control to provide new device functionalities and in the research of micromagnetic and magnetotransport phenomena in diluted magnetic semiconductors.
In this work, we provide an effective model to evaluate the one-electron dipole matrix elements governing optical excitations and the photoemission process of single-layer (SL) and bilayer (BL) transition metal dichalcogenides. By utilizing a $vec{k} cdot vec{p}$ Hamiltonian, we calculate the photoemission intensity as observed in angle-resolved photoemission from the valence bands around the $bar{K}$-valley of MoS$_2$. In SL MoS$_2$ we find a significant masking of intensity outside the first Brillouin zone, which originates from an in-plane interference effect between photoelectrons emitted from the Mo $d$ orbitals. In BL MoS$_2$ an additional inter-layer interference effect leads to a distinctive modulation of intensity with photon energy. Finally, we use the semiconductor Bloch equations to model the optical excitation in a time- and angle-resolved pump-probe photoemission experiment. We find that the momentum dependence of an optically excited population in the conduction band leads to an observable dichroism in both SL and BL MoS$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا