ﻻ يوجد ملخص باللغة العربية
Doped transition-metal dichalcogenides monolayers exhibit exciting magnetic properties for the benefit of two-dimensional spintronic devices. Using density functional theory (DFT) incorporating Hubbard-type of correction (DFT$+U$) to account for the electronic correlation, we study the magnetocrystalline anisotropy energy (MAE) characterizing Mn-doped MS$_2$ (M=Mo, W) monolayers. A single isolated Mn dopant exhibits a large perpendicular magnetic anisotropy of 35 meV (8 meV) in the case of Mn-doped WS$_2$ (MoS$_2$) monolayer. This value originates from the Mn in-plane orbitals degeneracy lifting due to the spin-orbit coupling. In pairwise doping, the magnetization easy axis changes to the in-plane direction with a weak MAE compared to single Mn doping. Our results suggest that diluted Mn-doped MS$_2$ monolayers, where the Mn dopants are well separated, could potentially be a candidate for the realization of ultimate nanomagnet units.
Materials with large magnetocrystalline anisotropy and strong electric field effects are highly needed to develop new types of memory devices based on electric field control of spin orientations. Instead of using modified transition metal films, we p
We study a doped transition metal dichalcogenide monolayer in an optical microcavity. Using the microscopic theory, we simulate spectra of quasiparticles emerging due to the interaction of material excitations and a high-finesse optical mode, providi
We present a three-band tight-binding (TB) model for describing the low-energy physics in monolayers of group-VIB transition metal dichalcogenides $MX_2$ ($M$=Mo, W; $X$=S, Se, Te). As the conduction and valence band edges are predominantly contribut
We theoretically study the interaction of an ultrafast intense linearly polarized optical pulse with monolayers of transition metal dichalcogenides (TMDCs). Such a strong pulse redistributes electrons between the bands and generates femtosecond curre
The linear absorption spectra in monolayers of transition metal dichalcogenides show pronounced signatures of the exceptionally strong exciton-phonon interaction in these materials. To account for both exciton and phonon physics in such optical signa