ﻻ يوجد ملخص باللغة العربية
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the literature considerably. The approach relies on regularity for the marginals of the process and applies also to non-Markovian processes, such as fractional Brownian motion. The results are used to approximate occupation times and local times. For Brownian motion, the upper bounds are shown to be sharp up to a log-factor.
The approximation of integral type functionals is studied for discrete observations of a continuous It^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractiona
The approximation of integral functionals with respect to a stationary Markov process by a Riemann-sum estimator is studied. Stationarity and the functional calculus of the infinitesimal generator of the process are used to get a better understanding
We consider the connections among `clumped residual allocation models (RAMs), a general class of stick-breaking processes including Dirichlet processes, and the occupation laws of certain discrete space time-inhomogeneous Markov chains related to sim
In this work, we study a new recursive stochastic algorithm for the joint estimation of quantile and superquantile of an unknown distribution. The novelty of this algorithm is to use the Cesaro averaging of the quantile estimation inside the recursiv
The first aim of the present paper, is to establish strong approximations of the uniform non-overlapping k-spacings process extending the results of Aly et al. (1984). Our methods rely on the invariance principle in Mason and van Zwet (1987). The sec