ﻻ يوجد ملخص باللغة العربية
The approximation of integral type functionals is studied for discrete observations of a continuous It^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractional smoothness. An explicit $L^2$-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.
The strong $L^2$-approximation of occupation time functionals is studied with respect to discrete observations of a $d$-dimensional c`adl`ag process. Upper bounds on the error are obtained under weak assumptions, generalizing previous results in the
The approximation of integral functionals with respect to a stationary Markov process by a Riemann-sum estimator is studied. Stationarity and the functional calculus of the infinitesimal generator of the process are used to get a better understanding
An urn contains balls of d colors. At each time, a ball is drawn and then replaced together with a random number of balls of the same color. Assuming that some colors are dominated by others, we prove central limit theorems. Some statistical applications are discussed.
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracte
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su