ﻻ يوجد ملخص باللغة العربية
The first aim of the present paper, is to establish strong approximations of the uniform non-overlapping k-spacings process extending the results of Aly et al. (1984). Our methods rely on the invariance principle in Mason and van Zwet (1987). The second goal, is to generalize the Dindar (1997) results for the increments of the spacings quantile process to the uniforme non-overlapping k-spacings quantile process. We apply the last result to characterize the limit laws of functionals of the increments k-spacings quantile process.
For $1 le p < infty$, the Frechet $p$-mean of a probability distribution $mu$ on a metric space $(X,d)$ is the set $F_p(mu) := {arg,min}_{xin X}int_{X}d^p(x,y), dmu(y)$, which is taken to be empty if no minimizer exists. Given a sequence $(Y_i)_{i in
We consider the connections among `clumped residual allocation models (RAMs), a general class of stick-breaking processes including Dirichlet processes, and the occupation laws of certain discrete space time-inhomogeneous Markov chains related to sim
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, for
Marcinkiewicz strong law of large numbers, ${n^{-frac1p}}sum_{k=1}^{n} (d_{k}- d)rightarrow 0 $ almost surely with $pin(1,2)$, are developed for products $d_k=prod_{r=1}^s x_k^{(r)}$, where the $x_k^{(r)} = sum_{l=-infty}^{infty}c_{k-l}^{(r)}xi_l^{(r
We give a new proof of the classical Central Limit Theorem, in the Mallows ($L^r$-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related t