ﻻ يوجد ملخص باللغة العربية
Unconstrained partial-wave amplitudes obtained at discrete energies from fits to complete sets of experimental data may not vary smoothly with energy, and are in principle non-unique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we demonstrate how an unknown overall phase depending on energy and angle mixes the structures seen in the associated partial-wave amplitudes making the partial wave decomposition non-unique, and illustrate it on a simple toy model. We then apply these principles to pseudo-scalar meson photoproduction and show that the non-uniqueness effect can be removed through a phase rotation, allowing a consistent comparison with model amplitudes. The effect of this phase ambiguity is also considered for Legendre expansions of experimental observables. 5 pages,
Within the framework of a Dirac bubble potential model for the C60 fullerene shell we investigated the angular time delay in slow-electron elastic scattering by C60 as well as average time delay of electrons in this process. It is demonstrated how th
Background: Zr region is characterized by very rapid changes in the ground state structure of the nuclei. In particular, the onset of deformation when passing from $^{98}$Zr to $^{100}$Zr is one of the fastest ever observed in the nuclear chart. It h
We develop an approach for calculating matrix elements of meson exchange currents between 3N basis states in (jJ)-coupling and a 3N bound state. The contribution generated by $pi$- and $rho$-exchange are included in the consideration. The matrix elem
Partial wave amplitudes for production and decay of baryon resonances are constructed in the framework of the operator expansion method. The approach is fully relativistically invariant and allow us to perform combined analyses of different reactions
It is shown that the unexpected character of the angular correlation between the angle of the primary fission fragment intrinsic spins, recently evaluated by performing very complex time-dependent density functional simulations, which favors fission