ﻻ يوجد ملخص باللغة العربية
Within the framework of a Dirac bubble potential model for the C60 fullerene shell we investigated the angular time delay in slow-electron elastic scattering by C60 as well as average time delay of electrons in this process. It is demonstrated how the angular time delay is connected to the Eisenbud-Wigner-Smith (EWS) time delay. The angular and energy dependences of these times are investigated. The studies conducted shed light to some extent on the specific features of these dependencies.
We present a joint experimental and theoretical study of spin dynamics of a single $^{88}$Sr$^+$ ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin-exchange between the two species occurs after 9.1(6) Langevin c
We study the behavior of the Eisenbud-Wigner collisional time delay around Feshbach resonances in cold and ultracold atomic and molecular collisions. We carry out coupled-channels scattering calculations on ultracold Rb and Cs collisions. In the low-
Unconstrained partial-wave amplitudes obtained at discrete energies from fits to complete sets of experimental data may not vary smoothly with energy, and are in principle non-unique. We demonstrate how this behavior can be ascribed to the continuum
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) ligh
Measuring the photoionization time delay between electrons from different orbitals is one of the most important accomplishments of attosecond science. These measurements are typically done using attosecond pulses to photoionize a target inside a phot