ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-spliced X-ray Diffraction Imaging

52   0   0.0 ( 0 )
 نشر من قبل Kenneth Beyerlein
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffraction imaging of non-equilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different delays in a time-resolved experiment. This is used to image the time and space evolution of antiferromagnetic order in a complex oxide heterostructure from measurements of a resonant soft X-ray diffraction peak. Mid-infrared excitation of the substrate is shown to lead to a magnetic front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

قيم البحث

اقرأ أيضاً

We present here an overview of Coherent X-ray Diffraction Imaging (CXDI) with its application to nanostructures. This imaging approach has become especially important recently due to advent of X-ray Free-Electron Lasers (XFEL) and its applications to the fast developing technique of serial X-ray crystallography. We start with the basic description of coherent scattering on the finite size crystals. The difference between conventional crystallography applied to large samples and coherent scattering on the finite size samples is outlined. The formalism of coherent scattering from a finite size crystal with a strain field is considered. Partially coherent illumination of a crystalline sample is developed. Recent experimental examples demonstrating applications of CXDI to the study of crystalline structures on the nanoscale, including experiments at FELs, are also presented.
124 - S W Lovesey , D D Khalyavin 2013
Magnetic charges, or magnetic monopoles, may form in the electronic structure of magnetic materials where ions are deprived of symmetry with respect to spatial inversion. Predicted in 2009, the strange magnetic, pseudoscalars have recently been found different from zero in simulations of electronic structures of some magnetically ordered, orthorhombic, lithium orthophosphates (LiMPO4). We prove that magnetic charges in lithium orthophosphates diffract x-rays tuned in energy to an atomic resonance, and to guide future experiments we calculate appropriate unit-cell structure factors for monoclinic LiCoPO4 and orthorhombic LiNiPO4.
X-ray resonant scattering has been used to measure the magnetic order of the Dy ions below 40K in multiferroic DyMn$_{2}$O$_{5}$. The magnetic order has a complex behaviour. There are several different ordering wavevectors, both incommensurate and co mmensurate, as the temperature is varied. In addition a non-magnetic signal at twice the wavevector of one of the commensurate signals is observed, the maximum intensity of which occurs at the same temperature as a local maximum in the ferroelectric polarisation. Some of the results, which bear resemblence to the behaviour of other members of the RMn$_{2}$O$_{5}$ family of multiferroic materials, may be explained by a theory based on so-called acentric spin-density waves.
We investigate the order parameter dynamics of the stripe-ordered nickelate, La$_{1.75}$Sr$_{0.25}$NiO$_4$, using time-resolved resonant X-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters amplitude dynamic s are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer re-orientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the non-equilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.
We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a dead surface layer is present that is only absorbing photons but does not contribute to the scattering signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا