ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent X-ray Diffraction Imaging of Nanostructures

129   0   0.0 ( 0 )
 نشر من قبل Ivan Vartaniants
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here an overview of Coherent X-ray Diffraction Imaging (CXDI) with its application to nanostructures. This imaging approach has become especially important recently due to advent of X-ray Free-Electron Lasers (XFEL) and its applications to the fast developing technique of serial X-ray crystallography. We start with the basic description of coherent scattering on the finite size crystals. The difference between conventional crystallography applied to large samples and coherent scattering on the finite size samples is outlined. The formalism of coherent scattering from a finite size crystal with a strain field is considered. Partially coherent illumination of a crystalline sample is developed. Recent experimental examples demonstrating applications of CXDI to the study of crystalline structures on the nanoscale, including experiments at FELs, are also presented.

قيم البحث

اقرأ أيضاً

Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high ene rgies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this data set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. We use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.
Photonic or electronic confinement effects in nanostructures become significant when one of their dimension is in the 5-300 nm range. Improving their development requires the ability to study their structure - shape, strain field, interdiffusion maps - using novel techniques. We have used coherent diffraction imaging to record the 3-dimensionnal scattered intensity of single silicon nanowires with a lateral size smaller than 100 nm. We show that this intensity can be used to recover the hexagonal shape of the nanowire with a 28nm resolution. The article also discusses limits of the method in terms of radiation damage.
We report on the study of a magnetic dislocation in pure chromium. Coherent x-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.
The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in pha se retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test pattern, infinite depth of focus image of a thick object, and its high-resolution (~10 nm resolution) three-dimensional image. Developments on the structural imaging of low density aerogel samples are discussed.
Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm (see also O. Yefanov et al., Photon Science - HASYLAB Annual Report 2010) that can solve this problem and can be applied to samples from tens of nanometers to microns in size, measured with sub-nanometer resolution in the presence of noise. This is achieved by the simultaneous analysis of a large number of diffraction patterns corresponding to different orientations of the particles. The algorithms efficiency is demonstrated for two biological samples, an artificial protein structure without any symmetry and a virus with icosahedral symmetry. Both structures are few tens of nanometers in size and consist of more than 100 000 non-hydrogen atoms. More than 10 000 diffraction patterns with Poisson noise were simulated and analyzed for each structure. Our simulations indicate the possibility to achieve resolution of about 3.3 {AA} at 3 {AA} wavelength and incoming flux of 10^{12} photons per pulse focused to 100times 100 nm^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا