ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolithic Photoelectrochemical Device for 19% Direct Water Splitting

387   0   0.0 ( 0 )
 نشر من قبل Wen-Hui Cheng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent rapid progress in efficiencies for solar water splitting by photoelectrochemical devices has enhanced its prospects to enable storable renewable energy. Efficient solar fuel generators all use tandem photoelectrode structures, and advanced integrated devices incorporate corrosion protection layers as well as heterogeneous catalysts. Realization of near thermodynamic limiting performance requires tailoring the energy band structure of the photoelectrode and also the optical and electronic properties of the surface layers exposed to the electrolyte. Here, we report a monolithic device architecture that exhibits reduced surface reflectivity in conjunction with metallic Rh nanoparticle catalyst layers that minimize parasitic light absorption. Additionally, the anatase TiO2 protection layer on the photocathode creates a favorable internal band alignment for hydrogen evolution. An initial solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an efficiency of 18.5 % is achieved at neutral pH condition (under simulated sunlight).

قيم البحث

اقرأ أيضاً

The present work reports on the enhancement of TiO2 nanotubes photoelectrochemical water splitting rate by decorating the nanostructure with an amine layer in a hydrothermal process using diethylenetriamine (DETA). The aminate coated TiO2 tubes show a stable improvement of the photoresponse in both UV and visible light spectrum and under hydrothermal conditions, 4-fold increase of the photoelectrochemical water splitting rate is observed. From intensity modulated photocurrent spectroscopy (IMPS) measurements significantly faster electron transport times are observed indicating a surface passivating effect of the N-decoration.
Owing to the versatility in their chemical and physical properties, transition metal perovskite oxides have emerged as a new category of highly efficient photocatalysts for photoelectrochemical water splitting. Here, to understand the underlying mech anism for the enhanced photoelectrochemical water splitting in mixed perovskites, we explore ideal epitaxial thin films of the BiFeO3-SrTiO3 system. The electronic struture and carrier dynamics are determined from both experiment and density-functional theory calculations. The intrinsic phenomena are measured in this ideal sytem, contrasting to commonly studied polycrstalline solid solutions where extrinsic structural features obscure the intrinsic phenomena. We determined that when SrTiO3 is added to BiFeO3 the conduction band minimum position is raised and an exponential tail of trap states from hybridized Ti 3d and Fe 3d orbitals emerges near the conduction band edge. The presence of these trap states strongly suppresses the fast electron-hole recombination and improves the photocurrent density in the visible-light region, up to 16 times at 0 VRHE compared to the pure end member compositions. Our work provides a new design approach for optimising the photoelectrochemical performance in mixed perovksite oxides.
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyzer architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical (PEC) water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional PEC systems, enabling safe and potentially affordable solar hydrogen production.
A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The mode l is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semiconductor with respect to the water reduction and oxidation potentials is presented. Calculated current-voltage curves are compared with established analytical models and measurement. Our model calculations are suitable to enhance understanding and improve properties of semiconductors for photoelectrochemical water splitting.
Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the te chnology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem being low-cost efficient catalysts. However, the insufficient long-term stability, degradation of structure and electrocatalytic activity are restricting their utilization. Here we report on a new perovskite-based self-assembling material BaCo0.98Ti0.02O3-$delta$:Co3O4 with superior performance, showing outstanding properties compared to current state-of-the-art materials without degeneration of its properties even at 353 K. By chemical and structural analysis the degradation mechanism was identified and modified by selective doping. Short-range order and chemical composition rather than long-range order are factors determining the outstanding performance. The derived general design rules can be used for further development of oxide-based electrocatalytic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا