ﻻ يوجد ملخص باللغة العربية
A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semiconductor with respect to the water reduction and oxidation potentials is presented. Calculated current-voltage curves are compared with established analytical models and measurement. Our model calculations are suitable to enhance understanding and improve properties of semiconductors for photoelectrochemical water splitting.
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional
The present work reports on the enhancement of TiO2 nanotubes photoelectrochemical water splitting rate by decorating the nanostructure with an amine layer in a hydrothermal process using diethylenetriamine (DETA). The aminate coated TiO2 tubes show
Recent rapid progress in efficiencies for solar water splitting by photoelectrochemical devices has enhanced its prospects to enable storable renewable energy. Efficient solar fuel generators all use tandem photoelectrode structures, and advanced int
In recent years, hematite potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes
Owing to the versatility in their chemical and physical properties, transition metal perovskite oxides have emerged as a new category of highly efficient photocatalysts for photoelectrochemical water splitting. Here, to understand the underlying mech