ترغب بنشر مسار تعليمي؟ اضغط هنا

Failed excitonic quantum phase transition in Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$

86   0   0.0 ( 0 )
 نشر من قبل Girsh Blumberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electronic phase diagram of the excitonic insulator candidates Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ [x=0, ... ,1] using Raman spectroscopy. Critical excitonic fluctuations are observed, that diminish with $x$ and ultimately shift to high energies, characteristic of a quantum phase transition. Nonetheless, a symmetry-breaking transition at finite temperatures is detected for all $x$, exposing a cooperating lattice instability that takes over for large $x$. Our study reveals a failed excitonic quantum phase transition, masked by a preemptive structural order.



قيم البحث

اقرأ أيضاً

Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5, Volkov et al. [arXiv:2007.07344], and also showed that for Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ alloys t he critical excitonic fluctuations diminish with sulfur concentration x exposing a cooperating lattice instability that takes over for large x, Volkov et al. [arXiv:2104.07032]. Here we focus on the lattice dynamics of this EI family. We identify all Raman-active optical phonons of fully symmetric and ac-quadrupole-like symmetries and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc(x) that is related to the EI phase. We find that Tc(x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also decreases with the sulfur concentration x. For x < 0.7, the two lowest-frequency B2g phonon modes show strongly asymmetric lineshapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. Within the framework of extended Fano model, we develop a quantitative description of the interacting exciton-phonon excitation lineshape, enabling us to derive the intrinsic phonon parameters and determine the exciton-phonon interaction strength, that affects the transition temperature Tc(x). We also observe signatures of the acoustic mode scattered assisted by the structural domain walls formed below Tc. Based on our results, we additionally present a consistent interpretation of the origin of oscillations observed in time-resolved pump-probe experiments.
The microscopic quantum interference associated with excitonic condensation in Ta$_2$NiSe$_5$ is studied in the BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just below the transition temperature $T_{rm c}$ whereas in NMR spin-lattice relaxation the rate rapidly decreases below $T_{rm c}$; these observations can offer a crucial experimental test for the validity of the excitonic condensation scenario in Ta$_2$NiSe$_5$. We also show that the excitonic condensation manifests itself in a jump of the heat capacity at $T_{rm c}$ as well as in softening of the elastic shear constant, in accordance with the second-order phase transition observed in Ta$_2$NiSe$_5$.
We investigate the non-equilibrium electronic structure and characteristic time scales in a candidate excitonic insulator, Ta$_2$NiSe$_5$, using time- and angle-resolved photoemission spectroscopy with a temporal resolution of 50 fs. Following a stro ng photoexcitation, the band gap closes transiently within 100 fs, i.e., on a time scale faster than the typical lattice vibrational period. Furthermore, we find that the characteristic time associated with the rise of the photoemission intensity above the Fermi energy decreases with increasing excitation strength, while the relaxation time of the electron population towards equilibrium shows an opposite behaviour. We argue that these experimental observations can be consistently explained by an excitonic origin of the band gap in the material. The excitonic picture is supported by microscopic calculations based on the non-equilibrium Greens function formalism for an interacting two-band system. We interpret the speedup of the rise time with fluence in terms of an enhanced scattering probability between photo-excited electrons and excitons, leading to an initially faster decay of the order parameter. We show that the inclusion of electron-phonon coupling at a semi-classical level changes only the quantitative aspects of the proposed dynamics, while the qualitative features remain the same. The experimental observations and microscopic calculations allow us to develop a simple and intuitive phenomenological model that captures the main dynamics after photoexcitation in Ta$_2$NiSe$_5$.
289 - L. Chen , T. T. Han , C. Cai 2020
Excitonic insulator (EI) is an intriguing insulating phase of matter, where electrons and holes are bonded into pairs, so called excitons, and form a phase-coherent state via Bose-Einstein Condensation (BEC). Its theoretical concept has been proposed several decades ago, but the followed research is very limited, due to the rare occurrence of EI in natural materials and the lack of manipulating method of excitonic condensation. In this paper, we report the realization of a doping-controlled EI-to-semi-metal transition in Ta$_2$NiSe$_5$ using $in$-$situ$ potassium deposition. Combining with angle-resolved photoemission spectroscopy (ARPES), we delineate the evolution of electronic structure through the EI transition with unprecedented precision. The results not only show that Ta$ _2 $NiSe$ _5 $ (TNS) is an EI originated from a semi-metal non-interacting band structure, but also resolve two sequential transitions, which could be attributed to the phase-decoherence and pair-breaking respectively. Our results unveil the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover behavior of TNS and demonstrate that its band structure and excitonic binding energy can be tuned precisely via alkali-metal deposition. This paves a way for investigations of BCS-BEC crossover phenomena, which could provide insights into the many-body physics in condensed matters and other many-body systems.
253 - H. Ning , O. Mehio , M. Buchhold 2020
In the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we derive the equations of motion for the Ising order parame ter in the phonon coupled excitonic insulator Ta$_2$NiSe$_5$ and show that it can be controllably reversed on ultrashort timescales using appropriate laser pulse sequences. Using a combination of theory and time-resolved optical reflectivity measurements, we report evidence of such order parameter reversal in Ta$_2$NiSe$_5$ based on the anomalous behavior of its coherently excited order-parameter-coupled phonons. Our work expands the field of ultrafast order parameter control beyond spin and charge ordered materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا