ﻻ يوجد ملخص باللغة العربية
Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a tar get protein based on the fold of a template protein with known structure, which cannot explain the relationship between sequence and fold. Only a few methods had been developed to classify protein sequences into a small number of folds due to methodological limitations, which are not generally useful in practice. Results We develop a deep 1D-convolution neural network (DeepSF) to directly classify any protein se quence into one of 1195 known folds, which is useful for both fold recognition and the study of se quence-structure relationship. Different from traditional sequence alignment (comparison) based methods, our method automatically extracts fold-related features from a protein sequence of any length and map it to the fold space. We train and test our method on the datasets curated from SCOP1.75, yielding a classification accuracy of 80.4%. On the independent testing dataset curated from SCOP2.06, the classification accuracy is 77.0%. We compare our method with a top profile profile alignment method - HHSearch on hard template-based and template-free modeling targets of CASP9-12 in terms of fold recognition accuracy. The accuracy of our method is 14.5%-29.1% higher than HHSearch on template-free modeling targets and 4.5%-16.7% higher on hard template-based modeling targets for top 1, 5, and 10 predicted folds. The hidden features extracted from sequence by our method is robust against sequence mutation, insertion, deletion and truncation, and can be used for other protein pattern recognition problems such as protein clustering, comparison and ranking.
Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolutio
Background: Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season turfgrass, but has shallow adventitious roots, poor disease-resistance. Little is known about the ISR mechanism of turfgrass and the sign
Structure-based Deep Fusion models were recently shown to outperform several physics- and machine learning-based protein-ligand binding affinity prediction methods. As part of a multi-institutional COVID-19 pandemic response, over 500 million small m
Protein modeling is an increasingly popular area of machine learning research. Semi-supervised learning has emerged as an important paradigm in protein modeling due to the high cost of acquiring supervised protein labels, but the current literature i
When a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results