ﻻ يوجد ملخص باللغة العربية
Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners, causing their sequences to be correlated. Here we exploit these correlations to accurately identify which proteins are specific interaction partners from sequence data alone. Our general approach, which employs a pairwise maximum entropy model to infer couplings between residues, has been successfully used to predict the three-dimensional structures of proteins from sequences. Thus inspired, we introduce an iterative algorithm to predict specific interaction partners from two protein families whose members are known to interact. We first assess the algorithms performance on histidine kinases and response regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive fraction on our complete dataset without any a priori knowledge of interaction partners, and we uncover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette (ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally, we present two metrics that accurately distinguish interacting protein families from non-interacting ones, using only sequence data.
Functional protein-protein interactions are crucial in most cellular processes. They enable multi-protein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins res
In spite of decades of research, much remains to be discovered about folding: the detailed structure of the initial (unfolded) state, vestigial folding instructions remaining only in the unfolded state, the interaction of the molecule with the solven
A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to
Determining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among par
Processes that proceed reliably from a variety of initial conditions to a unique final form, regardless of moderately changing conditions, are of obvious importance in biophysics. Protein folding is a case in point. We show that the action principle