ﻻ يوجد ملخص باللغة العربية
We examine the behavior of entanglement entropy of a subsystem $A$ in a fully backreacted holographic model of a $1+1$ dimensional $p$ wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phase beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size $l$ smaller than a critical size $l_{c1}$, entanglement entropy continues to increase as a function of the charge density as we cross the phase transition. When $l$ lies between $l_{c1}$ and another critical size $l_{c2}$ the entanglement entropy displays a non-monotonic behavior, while for $l > l_{c2}$ it decreases monotonically. At large charge densities entanglement entropy appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from
We study $(1+1)$-dimensional p-wave holographic superconductors described by three dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of $AdS_3/CFT_2$ correspondence. In the probe limit where the backreation
We present the results of our computation of the subregion complexity and also compare it with the entanglement entropy of a $2+1$--dimensional holographic superconductor which has a fully backreacted gravity dual with a stable ground sate. We follow
We study the Kibble-Zurek mechanism in a 2d holographic p-wave superconductor model with a homogeneous source quench on the critical point. We derive, on general grounds, the scaling of the Kibble-Zurek time, which marks breaking-down of adiabaticity