ﻻ يوجد ملخص باللغة العربية
We study the Kibble-Zurek mechanism in a 2d holographic p-wave superconductor model with a homogeneous source quench on the critical point. We derive, on general grounds, the scaling of the Kibble-Zurek time, which marks breaking-down of adiabaticity. It is expressed in terms of four critical exponents, including three static and one dynamical exponents. Via explicit calculations within a holographic model, we confirm the scaling of the Kibble-Zurek time and obtain the scaling functions in the quench process. We find the results are formally similar to a homogeneous quench in a higher dimensional holographic s-wave superconductor. The similarity is due to the special type of quench we take. We expect differences in the quench dynamics if the condition of homogeneous source and dominance of critical mode are relaxed.
The Kibble-Zurek (KZ) mechanism describes the generations of topological defects when a system undergoes a second-order phase transition via quenches. We study the holographic KZ scaling using holographic superconductors. The scaling can be understoo
We investigate the quench dynamics of an open quantum system involving a quantum phase transition. In the isolated case, the quench dynamics involving the phase transition exhibits a number of scaling relations with the quench rate as predicted by th
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from
We examine the behavior of entanglement entropy of a subsystem $A$ in a fully backreacted holographic model of a $1+1$ dimensional $p$ wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phas
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or