ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Complexity of a $2+1$--dimensional Holographic Superconductor

301   0   0.0 ( 0 )
 نشر من قبل Avik Chakraborty
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Avik Chakraborty




اسأل ChatGPT حول البحث

We present the results of our computation of the subregion complexity and also compare it with the entanglement entropy of a $2+1$--dimensional holographic superconductor which has a fully backreacted gravity dual with a stable ground sate. We follow the complexity equals volume or the CV conjecture. We find that there is only a single divergence for a strip entangling surface and the complexity grows linearly with the large strip width. During the normal phase the complexity increases with decreasing temperature, but during the superconducting phase it behaves differently depending on the order of phase transition. We also show that the universal term is finite and the phase transition occurs at the same critical temperature as obtained previously from the free energy computation of the system. In one case, we observe multivaluedness in the complexity in the form of an S curve.


قيم البحث

اقرأ أيضاً

200 - Mitsutoshi Fujita 2018
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or $T$. We show that the universal part is finite across the superconductor phase transition and has competitive behaviors different from the finite part of entanglement entropy. The behavior of the subregion complexity depends on the gravitational coupling constant divided by the gauge coupling constant. When this ratio is less than the critical value, the subregion complexity increases as temperature becomes low. This behavior is similar to the one of the holographic $1+1$ dimensional $s$-wave superconductor arXiv:1704.00557. When the ratio is larger than the critical value, the subregion complexity has a non-monotonic behavior as a function of $q$ or $T$. We also find a discontinuous jump of the subregion complexity as a function of the size of the interval. The subregion complexity has the maximum when it wraps the almost entire spatial circle. Due to competitive behaviors between normal and condensed phases, the universal term in the condensed phase becomes even smaller than that of the normal phase by probing the black hole horizon at a large interval. It implies that the formed condensate decreases the subregion complexity like the case of the entanglement entropy.
Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of the disk-shape subregion (with radius R) in various (2+1)-dimensional gapped systems with gravity dual. These systems include a class of toy models with singular IR and the bottom-up models for quantum chromodynamics and fractional quantum Hall effects. Two main results are: i) in the large-R expansion of the complexity, the R-linear term is always absent, similar to the absence of topological entanglement entropy; ii) when the entanglement entropy exhibits the classic `swallowtail phase transition, the complexity is sensitive but reacts differently.
We examine the behavior of entanglement entropy of a subsystem $A$ in a fully backreacted holographic model of a $1+1$ dimensional $p$ wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phas e beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size $l$ smaller than a critical size $l_{c1}$, entanglement entropy continues to increase as a function of the charge density as we cross the phase transition. When $l$ lies between $l_{c1}$ and another critical size $l_{c2}$ the entanglement entropy displays a non-monotonic behavior, while for $l > l_{c2}$ it decreases monotonically. At large charge densities entanglement entropy appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.
Quantum complexity of a thermofield double state in a strongly coupled quantum field theory has been argued to be holographically related to the action evaluated on the Wheeler-DeWitt patch. The growth rate of quantum complexity in systems dual to Ei nstein-Hilbert gravity saturates a bound which follows from the Heisenberg uncertainty principle. We consider corrections to the growth rate in models with flavor degrees of freedom. They are realized by adding a small number of flavor branes to the system. Holographically, such corrections come from the DBI action of the flavor branes evaluated on the Wheeler-DeWitt patch. We relate corrections to the growth of quantum complexity to corrections to the mass of the system, and observe that the bound on the growth rate is never violated.
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering hologra phic purifications of a holographic mixed state. We argue that these include states with any amount of coarse-graining consistent with being a purification of the mixed state in question, corresponding holographically to different choices of the cutoff surface. We find that within the complexity = volume and complexity = spacetime volume conjectures, the subregion complexity is equal to the holographic purification complexity. For complexity = action, the subregion complexity seems to provide an upper bound on the holographic purification complexity, though we show cases where this bound is not saturated. One such example is provided by black holes with a large genus behind the horizon, which were studied by Fu et al. As such, one must conclude that these offending geometries are not holographic, that CA must be modified, or else that holographic subregion complexity in CA is not dual to the purification complexity of the corresponding reduced state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا