ﻻ يوجد ملخص باللغة العربية
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs from the original distribution. In particular, the observed data is constrained to lie in a subset of the original sample space that is determined by the selected model. This often makes the post-selection likelihood of the observed data intractable and maximum likelihood inference difficult. In this work, we get around the intractable likelihood by generating noisy unbiased estimates of the post-selection score function and using them in a stochastic ascent algorithm that yields correct post-selection maximum likelihood estimates. We apply the proposed technique to the problem of estimating linear models selected by the lasso. In an asymptotic analysis the resulting estimates are shown to be consistent for the selected parameters and to have a limiting truncated normal distribution. Confidence intervals constructed based on the asymptotic distribution obtain close to nominal coverage rates in all simulation settings considered, and the point estimates are shown to be superior to the lasso estimates when the true model is sparse.
Among the most popular variable selection procedures in high-dimensional regression, Lasso provides a solution path to rank the variables and determines a cut-off position on the path to select variables and estimate coefficients. In this paper, we c
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
Nonparametric maximum likelihood (NPML) for mixture models is a technique for estimating mixing distributions that has a long and rich history in statistics going back to the 1950s, and is closely related to empirical Bayes methods. Historically, NPM
Maximum likelihood constraint inference is a powerful technique for identifying unmodeled constraints that affect the behavior of a demonstrator acting under a known objective function. However, it was originally formulated only for discrete state-ac
The random coefficients model $Y_i={beta_0}_i+{beta_1}_i {X_1}_i+{beta_2}_i {X_2}_i+ldots+{beta_d}_i {X_d}_i$, with $mathbf{X}_i$, $Y_i$, $mathbf{beta}_i$ i.i.d, and $mathbf{beta}_i$ independent of $X_i$ is often used to capture unobserved heterogene