ﻻ يوجد ملخص باللغة العربية
Nonparametric maximum likelihood (NPML) for mixture models is a technique for estimating mixing distributions that has a long and rich history in statistics going back to the 1950s, and is closely related to empirical Bayes methods. Historically, NPML-based methods have been considered to be relatively impractical because of computational and theoretical obstacles. However, recent work focusing on approximate NPML methods suggests that these methods may have great promise for a variety of modern applications. Building on this recent work, a class of flexible, scalable, and easy to implement approximate NPML methods is studied for problems with multivariate mixing distributions. Concrete guidance on implementing these methods is provided, with theoretical and empirical support; topics covered include identifying the support set of the mixing distribution, and comparing algorithms (across a variety of metrics) for solving the simple convex optimization problem at the core of the approximate NPML problem. Additionally, three diverse real data applications are studied to illustrate the methods performance: (i) A baseball data analysis (a classical example for empirical Bayes methods), (ii) high-dimensional microarray classification, and (iii) online prediction of blood-glucose density for diabetes patients. Among other things, the empirical results demonstrate the relative effectiveness of using multivariate (as opposed to univariate) mixing distributions for NPML-based approaches.
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs fro
The von Mises-Fisher distribution is one of the most widely used probability distributions to describe directional data. Finite mixtures of von Mises-Fisher distributions have found numerous applications. However, the likelihood function for the fini
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of