ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-Lasso Inference for High-Dimensional Regression

327   0   0.0 ( 0 )
 نشر من قبل X. Jessie Jeng
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the most popular variable selection procedures in high-dimensional regression, Lasso provides a solution path to rank the variables and determines a cut-off position on the path to select variables and estimate coefficients. In this paper, we consider variable selection from a new perspective motivated by the frequently occurred phenomenon that relevant variables are not completely distinguishable from noise variables on the solution path. We propose to characterize the positions of the first noise variable and the last relevant variable on the path. We then develop a new variable selection procedure to control over-selection of the noise variables ranking after the last relevant variable, and, at the same time, retain a high proportion of relevant variables ranking before the first noise variable. Our procedure utilizes the recently developed covariance test statistic and Q statistic in post-selection inference. In numerical examples, our method compares favorably with other existing methods in selection accuracy and the ability to interpret its results.



قيم البحث

اقرأ أيضاً

With the availability of high dimensional genetic biomarkers, it is of interest to identify heterogeneous effects of these predictors on patients survival, along with proper statistical inference. Censored quantile regression has emerged as a powerfu l tool for detecting heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little work available to draw inference on the effects of high dimensional predictors for censored quantile regression. This paper proposes a novel procedure to draw inference on all predictors within the framework of global censored quantile regression, which investigates covariate-response associations over an interval of quantile levels, instead of a few discrete values. The proposed estimator combines a sequence of low dimensional model estimates that are based on multi-sample splittings and variable selection. We show that, under some regularity conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed by the quantile level. Simulation studies indicate that our procedure can properly quantify the uncertainty of the estimates in high dimensional settings. We apply our method to analyze the heterogeneous effects of SNPs residing in lung cancer pathways on patients survival, using the Boston Lung Cancer Survival Cohort, a cancer epidemiology study on the molecular mechanism of lung cancer.
64 - Faming Liang , Jingnan Xue , 2020
This paper proposes an innovative method for constructing confidence intervals and assessing p-values in statistical inference for high-dimensional linear models. The proposed method has successfully broken the high-dimensional inference problem into a series of low-dimensional inference problems: For each regression coefficient $beta_i$, the confidence interval and $p$-value are computed by regressing on a subset of variables selected according to the conditional independence relations between the corresponding variable $X_i$ and other variables. Since the subset of variables forms a Markov neighborhood of $X_i$ in the Markov network formed by all the variables $X_1,X_2,ldots,X_p$, the proposed method is coined as Markov neighborhood regression. The proposed method is tested on high-dimensional linear, logistic and Cox regression. The numerical results indicate that the proposed method significantly outperforms the existing ones. Based on the Markov neighborhood regression, a method of learning causal structures for high-dimensional linear models is proposed and applied to identification of drug sensitive genes and cancer driver genes. The idea of using conditional independence relations for dimension reduction is general and potentially can be extended to other high-dimensional or big data problems as well.
132 - Amit Meir , Mathias Drton 2017
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs fro m the original distribution. In particular, the observed data is constrained to lie in a subset of the original sample space that is determined by the selected model. This often makes the post-selection likelihood of the observed data intractable and maximum likelihood inference difficult. In this work, we get around the intractable likelihood by generating noisy unbiased estimates of the post-selection score function and using them in a stochastic ascent algorithm that yields correct post-selection maximum likelihood estimates. We apply the proposed technique to the problem of estimating linear models selected by the lasso. In an asymptotic analysis the resulting estimates are shown to be consistent for the selected parameters and to have a limiting truncated normal distribution. Confidence intervals constructed based on the asymptotic distribution obtain close to nominal coverage rates in all simulation settings considered, and the point estimates are shown to be superior to the lasso estimates when the true model is sparse.
Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden c onfounding and propose the {em Doubly Debiased Lasso} estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and u nstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا