ﻻ يوجد ملخص باللغة العربية
An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with online calculation of the quantum filter. By using a differential geometric approach, the quantum trajectory is constrained in a finite-dimensional differentiable manifold consisting of an unnormalized exponential family of quantum density operators, and an exponential quantum projection filter is then formulated as a number of stochastic differential equations satisfied by the finite-dimensional coordinate system of this manifold. A convenient design of the differentiable manifold is also presented through reduction of the local approximation errors, which yields a simplification of the quantum projection filter equations. It is shown that the computational cost can be significantly reduced by using the quantum projection filter instead of the quantum filter. It is also shown that when the quantum projection filtering approach is applied to a class of open quantum systems that asymptotically converge to a pure state, the input-to-state stability of the corresponding exponential quantum projection filter can be established. Simulation results from an atomic ensemble system example are provided to illustrate the performance of the projection filtering scheme. It is expected that the proposed approach can be used in developing more efficient quantum control methods.
We investigate in this work a recently proposed diagrammatic quantum Monte Carlo method --- the inchworm Monte Carlo method --- for open quantum systems. We establish its validity rigorously based on resummation of Dyson series. Moreover, we introduc
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional ca
We consider the dynamics $tmapstotau_t$ of an infinite quantum lattice system that is generated by a local interaction. If the interaction decomposes into a finite number of terms that are themselves local interactions, we show that $tau_t$ can be ef
Generically, spectral statistics of spinless systems with time reversal invariance (TRI) and chaotic dynamics are well described by the Gaussian Orthogonal ensemble (GOE). However, if an additional symmetry is present, the spectrum can be split into
We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously--monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the ave