ﻻ يوجد ملخص باللغة العربية
We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously--monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the average evolution, and that the same equivalence holds for the global asymptotic stability. Moreover, we prove that a strict linear Lyapunov function for the average evolution always exists, and latter can be used to derive sharp bounds on the Lyapunov exponents of the associated semigroup. Nonetheless, we also show that taking into account the measurements can lead to an improved bound on stability rate for the stochastic, non-averaged dynamics. We discuss explicit examples where the almost sure stability rate can be made arbitrary large while the average one stays constant.
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equat
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using
A coupled forward-backward stochastic differential system (FBSDS) is formulated in spaces of fields for the incompressible Navier-Stokes equation in the whole space. It is shown to have a unique local solution, and further if either the Reynolds numb