ترغب بنشر مسار تعليمي؟ اضغط هنا

An Estimation of the White Dwarf Mass in the Dwarf Nova GK Persei with NuSTAR Observations of Two States

81   0   0.0 ( 0 )
 نشر من قبل Yuuki Wada
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on X-ray observations of the Dwarf Nova GK Persei performed by {it NuSTAR} in 2015. GK Persei, behaving also as an Intermediate Polar, exhibited a Dwarf Nova outburst in 2015 March--April. The object was observed with {sl NuSTAR} during the outburst state, and again in a quiescent state wherein the 15--50 keV flux was 33 times lower. Using a multi-temperature plasma emission and reflection model, the highest plasma temperature in the accretion column was measured as $19.7^{+1.3}_{-1.0}$~keV in outburst and $36.2^{+3.5}_{-3.2}$~keV in quiescence. The significant change of the maximum temperature is considered to reflect an accretion-induced decrease of the inner-disk radius $R_{rm in}$, where accreting gas is captured by the magnetosphere. Assuming this radius scales as $R_{rm in} propto dot{M}^{-2/7}$ where $dot{M}$ is the mass accretion rate, we obtain $R_{rm in} = 1.9 ^{+0.4}_{-0.2}~R_{rm WD}$ and $R_{rm in} = 7.4^{+2.1}_{-1.2}~R_{rm WD}$ in outburst and quiescence respectively, where $R_{rm WD}$ is the white-dwarf radius of this system. Utilising the measured temperatures and fluxes, as well as the standard mass-radius relation of white dwarfs, we estimate the white-dwarf mass as $M_{rm WD} = 0.87~pm~0.08~M_{rm odot}$ including typical systematic uncertainties by 7%. The surface magnetic field is also measured as $B sim 5 times 10^{5}$~G. These results exemplify a new X-ray method of estimating $M_{rm WD}$ and $B$ of white dwarfs by using large changes in $dot{M}$.



قيم البحث

اقرأ أيضاً

We report on NuSTAR observations of the Intermediate Polar GK Persei which also behaves as a Dwarf Nova. It exhibited a Dwarf Nova outburst in 2015 March-April. The object was observed in 3-79 keV X-rays with NuSTAR, once at the outburst peak, and ag ain in 2015 September during quiescence. The 5-50 keV flux during the outburst was 26 times higher than that during the quiescence. With a multi-temperature emission model and a reflection model, we derived the post-shock temperature as 19.2 +/- 0.7 keV in the outburst, and 38.5 +4.1/-3.6 keV in the quiescence. This temperature difference is considered to reflect changes in the radius at which the accreting matter, forming an accretion disk, is captured by the magnetosphere of the white dwarf (WD). Assuming that this radius scales as the power of -2/7 of the mass accretion rate, and utilizing the two temperature measurements, as well as the standard mass-radius relation of WDs, we determined the WD mass in GK Persei as 0.90 +/- 0.06 solar masses. The magnetic field is estimated as 4*10^5 G.
GK Persei (1901, the Firework Nebula) is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the shape softwar e. New imaging from the Aristarchos telescope continues to track the proper motion, extinction and structural evolution of the knots, which have been observed intermittently over several decades. We present for the first time, kinematical constraints on a large faint jet feature, that was previously detected beyond the shell boundary. These observational constraints allow for the generation of models for individual knots, interactions within knot complexes, and the jet feature. Put together, and taking into account dwarf-nova accelerated winds emanating from the central source, these data and models give a deeper insight into the GK Per nova remnant as a whole.
AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P_spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L_X ~ 10^{31} erg/s). We have ana lyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in September of 2012. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75 +0.18 -0.45, 2.29 +0.96 -0.82, and 9.33 +6.07 -2.18 keV, or an optically thin thermal plasma model with two temperatures of 1.00 +0.34 -0.23 and 4.64 +1.58 -0.84 keV plus a power-law component with photon index of 2.50 +0.17 -0.23. The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6 +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.
152 - C.M. Copperwheat 2009
We present high speed photometric observations of the eclipsing dwarf nova IP Peg taken with the triple-beam camera ULTRACAM mounted on the William Herschel Telescope. The primary eclipse in this system was observed twice in 2004, and then a further sixteen times over a three week period in 2005. Our observations were simultaneous in the Sloan u, g and r bands. By phase-folding and averaging our data we make the first significant detection of the white dwarf ingress in this system and find the phase width of the white dwarf eclipse to be 0.0935 +/- 0.0003, significantly higher than the previous best value of between 0.0863 and 0.0918. The mass ratio is found to be q = M2 /M1 = 0.48 +/- 0.01, consistent with previous measurements, but we find the inclination to be 83.8 +/- 0.5 deg, significantly higher than previously reported. We find the radius of the white dwarf to be 0.0063 +/- 0.0003 solar radii, implying a white dwarf mass of 1.16 +/- 0.02 solar masses. The donor mass is 0.55 +/- 0.02 solar masses. The white dwarf temperature is more difficult to determine, since the white dwarf is seen to vary significantly in flux, even between consecutive eclipses. This is seen particularly in the u-band, and is probably the result of absorption by disc material. Our best estimate of the temperature is 10,000 - 15,000K, which is much lower than would be expected for a CV with this period, and implies a mean accretion rate of less than 5 times 10^-11 solar masses per year, more than 40 times lower than the expected rate.
V959 Mon is one of the gamma-ray detected novae. It was optically discovered about 50 days after the gamma-ray detection due to proximity to the Sun. The nova speed class is unknown because of lack of the earliest half of optical light curve and shor t supersoft X-ray phase due to eclipse by the disk rim. Using the universal decline law and time-stretching method, we analyzed the data of V959 Mon and obtained nova parameters. We estimated the distance modulus in the V band to be (m-M)_V=13.15pm0.3 for the reddening of E(B-V)=0.38pm0.01 by directly comparing with the similar type of novae, LV Vul, V1668 Cyg, IV Cep, and V1065 Cen. The distance to V959 Mon is 2.5pm0.5 kpc. If we assume that the early phase light curve of V959 Mon is the same as that of time-stretched light curves of LV Vul, our model light curve fitting suggests that the white dwarf (WD) mass is 0.9-1.15 M_sun, being consistent with a neon nova identification. At the time of gamma-ray detection the photosphere of nova envelope extends to 5-8 R_sun (about two or three times the binary separation) and the wind mass-loss rate is (3-4)times 10^{-5} M_sun yr^{-1}. The period of hard X-ray emission is consistent with the time of appearance of the companion star from the nova envelope. The short supersoft X-ray turnoff time is consistent with the epoch when the WD photosphere shrank to behind the elevating disk rim, that occurs 500 days before nuclear burning turned off.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا