ﻻ يوجد ملخص باللغة العربية
Nova Per 2018 (= V392 Per) halted the decline from maximum when it was 2mag brighter than quiescence and since 2019 has been stable at such a plateau. The ejecta have already fully diluted into the interstellar space. We obtained BVRIgrizY photometry and optical spectroscopy of V392 Per during the plateau phase and compared it with equivalent data gathered prior to the nova outburst. We find the companion star to be a G9 IV/III and the orbital period to be 3.4118 days, making V392 Per the longest known period for a classical nova. The location of V392 Per on the theoretical isochrones is intermediate between that of classical novae and novae erupting within symbiotic binaries, in a sense bridging the gap. The reddening is derived to be E(B-V)=0.72 and the fitting to isochrones returns a 3.6 Gyr age for the system and 1.35 Msun, 5.3 Rsun, and 15 Lsun for the companion. The huge Ne overabundance in the ejecta and the very fast decline from nova maximum both point to a massive white dwarf (M(WD) >= 1.1-1.2 Msun). The system is viewed close to pole-on conditions and the current plateau phase is caused by irradiation of the CS by the WD still burning at the surface.
We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of
GK Per, a classical nova of 1901, is thought to undergo variable mass accretion on to a magnetized white dwarf (WD) in an intermediate polar system (IP). We organized a multi-mission observational campaign in the X-ray and ultraviolet (UV) energy ran
We present time-resolved optical spectroscopy of V458 Vulpeculae (Nova Vul 2007 No. 1) spread over a period of 15 months starting 301 days after its discovery. Our data reveal radial velocity variations in the HeII {lambda}5412 and HeII {lambda}4686
CCD photometric observations of the dwarf nova V1006 Cyg were carried out in 2015-2017 with 11 telescopes located at 7 observatories. They covered the 2015 superoutburst with rebrightening, five normal outbursts of ~4-day duration and one wide outbur
Symbiotic binary AG~Draconis (AG~Dra) has an well-established outburst behavior based on an extensive observational history. Usually, the system undergoes a 9--15~yr period of quiescence with a constant average energy emitted, during which the system