ﻻ يوجد ملخص باللغة العربية
Maintaining leadership in HPC requires the ability to support simulations at large scales and fidelity. In this study, we detail one of the most significant productivity challenges in achieving this goal, namely the increasing proclivity to bugs, especially in the face of growing hardware and software heterogeneity and sheer system scale. We identify key areas where timely new research must be proactively begun to address these challenges, and create new correctness tools that must ideally play a significant role even while ramping up toward exacale. We close with the proposal for a two-day workshop in which the problems identified in this report can be more broadly discussed, and specific plans to launch these new research thrusts identified.
Scientific workflows have been used almost universally across scientific domains, and have underpinned some of the most significant discoveries of the past several decades. Many of these workflows have high computational, storage, and/or communicatio
Many HPC applications suffer from a bottleneck in the shared caches, instruction execution units, I/O or memory bandwidth, even though the remaining resources may be underutilized. It is hard for developers and runtime systems to ensure that all crit
The $beta$-decay properties of the neutron-deficient nuclei $^{25}$Si and $^{26}$P have been investigated at the GANIL/LISE3 facility by means of charged-particle and $gamma$-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength
Scientific workflows are a cornerstone of modern scientific computing, and they have underpinned some of the most significant discoveries of the last decade. Many of these workflows have high computational, storage, and/or communication demands, and
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom