ﻻ يوجد ملخص باللغة العربية
The $beta$-decay properties of the neutron-deficient nuclei $^{25}$Si and $^{26}$P have been investigated at the GANIL/LISE3 facility by means of charged-particle and $gamma$-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction. B(GT) values derived from the absolute measurement of the $beta$-decay branching ratios give rise to a quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of 43.7 (6) ms was determined for $^{26}$P, the $beta$- (2)p decay mode of which is described.
$beta$-decay spectroscopy provides valuable information on exotic nuclei and a stringent test for nuclear theories beyond the stability line. To search for new $beta$-delayed protons and $gamma$ rays of $^{25}$Si to investigate the properties of $^{2
$beta$ decay of $^{26}$P was used to populate the astrophysically important $E_x=$5929.4(8) keV $J^{pi}=3{^+}$ state of $^{26}$Si. Both $beta$-delayed proton at 418(8) keV and gamma ray at 1742(2) keV emitted from this state were measured simultaneou
The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom
Classical novae are expected to contribute to the 1809-keV Galactic $gamma$-ray emission by producing its precursor $^{26}$Al, but the yield depends on the thermonuclear rate of the unmeasured $^{25}$Al($p,gamma$)$^{26}$Si reaction. Using the $beta$
We have observed beta-delayed proton emission from the neutron-rich nucleus 11Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 +- 0.6) 10^{-6} the strength of t