ترغب بنشر مسار تعليمي؟ اضغط هنا

CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf??

92   0   0.0 ( 0 )
 نشر من قبل Philippe Delorme
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR~J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. We analyzed 9 hours of X-Shooter spectroscopy with signal detectable from 0.8--2.3$mu$m, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5$mu$m, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3-D kinematics. While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB~Doradus. We use the equivalent width of the KI doublet at 1.25$mu$m as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR2149, the observed KI doublet clearly favours the low-gravity solution. CFBDSIR2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2--13Mjup, $<$500Myr) possibly similar to the exoplanet 51Erib, or perhaps a 2--40Mjup brown dwarf with super-solar metallicity.



قيم البحث

اقرأ أيضاً

We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta ined Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
147 - Sascha P. Quanz 2009
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In th is paper, we present six new candidates for (very) low-mass objects in the Taurus star-forming region one of which was recently discovered in parallel by Luhman et al. (2009). The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than four magnitudes deeper than the 2MASS survey and covers currently ~1.5 square degree. Complementary optical photometry from SDSS were available for roughly 1.0 square degree. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra we derive a spectral type of L2+/-0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models we find the effective temperature to be 2080+/-140 K and the mass 5-15 Jupiter masses. For the second source the J-band spectrum does not provide a definite proof of the young, low-mass nature of the object as the expected steep water vapor absorption at 1.33 micron is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 Jupiter masses) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.
The mass and age of substellar objects are degenerate parameters leaving the evolutionary state of brown dwarfs ambiguous without additional information. Theoretical models are normally used to help distinguish between old, massive brown dwarfs and y oung, low mass brown dwarfs but these models have yet to be properly calibrated. We have carried out an infrared high-contrast imaging program with the goal of detecting substellar objects as companions to nearby stars to help break degeneracies in inferred physical properties such as mass, age, and composition. Rather than using imaging observations alone, our targets are pre-selected based on the existence of dynamical accelerations informed from years of stellar radial velocity (RV) measurements. In this paper, we present the discovery of a rare benchmark brown dwarf orbiting the nearby ($d=18.69pm0.19$ pc), solar-type (G9V) star HD 4747 ([Fe/H]=$-0.22pm0.04$) with a projected separation of only $rho=11.3pm0.2$ AU ($theta approx$ 0.6). Precise Doppler measurements taken over 18 years reveal the companions orbit and allow us to place strong constraints on its mass using dynamics ($m sin(i) = 55.3pm1.9M_J$). Relative photometry ($Delta K_s=9.05pm0.14$, $M_{K_s}=13.00pm0.14$, $K_s - L = 1.34pm0.46$) indicates that HD 4747 B is most-likely a late-type L-dwarf and, if near the L/T transition, an intriguing source for studying cloud physics, variability, and polarization. We estimate a model-dependent mass of $m=72^{+3}_{-13}M_J$ for an age of $3.3^{+2.3}_{-1.9}$ Gyr based on gyrochronology. Combining astrometric measurements with RV data, we calculate the companion dynamical mass ($m=60.2pm3.3M_J$) and orbit ($e=0.740pm0.002$) directly. As a new mass, age, and metallicity benchmark, HD 4747 B will serve as a laboratory for precision astrophysics to test theoretical models that describe the emergent radiation of brown dwarfs.
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substell ar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d=18.69+/-0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K1-band recover the companion and reveal that it is near the L/T transition (T1+/-2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a $2sigma$ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study secondary effects such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا