ﻻ يوجد ملخص باللغة العربية
The young and nearby star beta Pictoris (beta Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the HI Lyman alpha (Ly-alpha) line. We present a new technique to decrease the contamination of the Ly-alpha line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-alpha line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. The column density of hydrogen in the beta Pic stable gas disk at the stellar radial velocity is measured to be $log(N_{mathrm{H}}/1 mathrm{cm}^2) ll 18.5$. The Ly-alpha emission line profile is found to be asymmetric and we propose that this is caused by HI falling in towards the star with a bulk radial velocity of $41pm6$ km/s relative to beta Pic and a column density of $log(N_{mathrm{H}}/1 mathrm{cm}^2) = 18.6pm0.1$. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
The debris disk surrounding $beta$ Pictoris has a gas composition rich in carbon and oxygen, relative to solar abundances. Two possible scenarios have been proposed to explain this enrichment. The preferential production scenario suggests that the ga
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary
Ever since the discovery of the edge-on circumstellar disk around beta Pictoris, a standing question has been why the gas observed against the star in absorption is not rapidly expelled by the strong radiation pressure from the star. A solution to th
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta
Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at submm wavelengths of the archetypal debris disk around $beta$ Pictoris show t