ترغب بنشر مسار تعليمي؟ اضغط هنا

Field of first flux entry and pinning strength of superconductors for RF application measured with muon spin rotation

334   0   0.0 ( 0 )
 نشر من قبل Tobias Junginger
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry $H_{entry}$ and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation ($mu$SR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400{deg}C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure $H_{entry}$ of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

قيم البحث

اقرأ أيضاً

In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small gra in 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.
Measurements of the in-plane magnetic field penetration depth lambda_{ab} in Fe-based superconductors with the nominal composition SmFeAsO_0.85 (T_csimeq52K) and NdFeAsO_0.85 (T_csimeq51K) were carried out by means of muon-spin-rotation. The absolute values of lambda_{ab} at T=0 were found to be 189(5)nm and 195(5)nm for Sm and Nd substituted samples, respectively. The analysis of the magnetic penetration depth data within the Uemura classification scheme, which considers the correlation between the superconducting transition temperature T_c and the effective Fermi temperature T_F, reveal that both families of Fe-based superconductors (with and without fluorine) falls to the same class of unconventional superconductors.
94 - V.R. Misko , Franco Nori 2012
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT APS is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a capacitor to store magnetic flux.
177 - Y. Sun , Z. X. Shi , D. M. Gu 2010
Magnetic hysteresis loops (MHLs) have been comparatively measured on both textured and single crystalline Sc5Ir4Si10 superconductors. Critical current densities and flux pinning forces are calculated from MHLs by Bean model. Three kinds of peaks of t he flux pinning force are found at low fields near zero, intermediated fields, and high fields near the upper critical field, respectively. The characters and origins of these peaks are studied in detail.
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produces a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the den sity of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport simulations in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. We find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا