ترغب بنشر مسار تعليمي؟ اضغط هنا

Peak Effect of Flux Pinning in Sc5Ir4Si10 Superconductors

224   0   0.0 ( 0 )
 نشر من قبل Zhixiang Shi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic hysteresis loops (MHLs) have been comparatively measured on both textured and single crystalline Sc5Ir4Si10 superconductors. Critical current densities and flux pinning forces are calculated from MHLs by Bean model. Three kinds of peaks of the flux pinning force are found at low fields near zero, intermediated fields, and high fields near the upper critical field, respectively. The characters and origins of these peaks are studied in detail.



قيم البحث

اقرأ أيضاً

151 - V.R. Misko , Franco Nori 2012
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT APS is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a capacitor to store magnetic flux.
The synthesis and characterization of PVA (Poly Vinyl Acetate) doped bulk MgB2 superconductor is reported here. PVA is used as a Carbon source. PVA doping effects made two distinguishable contributions: first enhancement of Jc field performance and s econd an increase in Hc2 value, both because of carbon incorporation into MgB2 crystal lattice. The susceptibility measurement reveals that Tc decreased from 37 to 36 K. Lattice parameter a decreased from 3.085 A to 3.081 A due to the partial substitution of Carbon at Boron site. PVA doped sample exhibited the Jc values greater than 10^5 A/cm2 at 5 & 10 K at low fields; which is almost 3 times higher than the pure one, while at high fields the Jc is increased by an order of magnitude in comparison to pure MgB2. From R(T)H measurements we found higher Tc values under magnetic field for doped sample; indicating an increase in Hc2. Also the magnetization measurements exhibited a significant enhancement in Hirr value. The improved performance of PVA doped MgB2 can be attributed to the substitution of carbon at boron site in parent MgB2 and the resulting impact on the carrier density and impurity scattering. The improved flux pinning behavior could easily be seen from reduced flux pinning force plots.
We study the zero-temperature dynamic transition from the disordered flow to an ordered flow state in driven vortices in type-II superconductors. The transition current $I_{p}$ is marked by a sharp kink in the $V(I)$ characteristic with a concomitant large increase in the defect concentration. On increasing magnetic field $B$, the $I_{p}(B)$ follows the behaviour of the critical current $I_{c}(B)$. Specifically, in the peak effect regime $I_{p}(B)$ increases rapidly along with $I_{c}$. We also discuss the effect of varying disorder strength on $I_{p}$.
Polycrystalline La2-xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x = 0.1 - 0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting tran sition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centers in the unit cell leading to increase in critical current density and flux pinning
Superconducting MgB2 strands with nanometer-scale SiC additions have been investigated systematically using transport and magnetic measurements. A comparative study of MgB2 strands with different nano-SiC addition levels has shown C-doping-enhanced c ritical current density Jc through enhancements in the upper critical field, Hc2, and decreased anisotropy. The critical current density and flux pinning force density obtained from magnetic measurements were found to greatly differ from the values obtained through transport measurements, particularly with regards to magnetic field dependence. The differences in magnetic and transport results are largely attributed to connectivity related effects. On the other hand, based on the scaling behavior of flux pinning force, there may be other effective pinning centers in MgB2 strands in addition to grain boundary pinning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا