ﻻ يوجد ملخص باللغة العربية
The ultraviolet (UV) spectral energy distributions of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyman alpha line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar HI absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES HST Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyman alpha and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyman alpha profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV spectral energy distribution from the intrinsic Lyman alpha flux in ~100 {AA} bins from 100-1170 {AA}. The reconstructed Lyman alpha profiles have 300 km/s broad cores, while >1% of the total intrinsic Lyman alpha flux is measured in extended wings between 300 km/s to 1200 km/s. The Lyman alpha surface flux positively correlates with the MgII surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyman alpha surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present HI column density measurements for 10 new sightlines through the local interstellar medium.
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planets potential habitability, particularly for M dwarfs as they are prime targets for current and near-term exoplanet chara
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of
We use spectra from CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs, to search for periods in chromospheric indices in 16 M0 to M2 dwarfs. We measure spectral indices i
The HI Ly$alpha$ (1215.67 $unicode{xC5}$) emission line dominates the far-UV spectra of M dwarf stars, but strong absorption from neutral hydrogen in the interstellar medium makes observing Ly$alpha$ challenging even for the closest stars. As part of
We present the optical spectra of 338 nearby M dwarfs, and compute their spectral types, effective temperatures ($T_{mathrm{eff}}$), and radii. Our spectra have been obtained using several optical spectrometers with spectral resolutions that range fr