ﻻ يوجد ملخص باللغة العربية
Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.
Modern reconstruction methods for magnetic resonance imaging (MRI) exploit the spatially varying sensitivity profiles of receive-coil arrays as additional source of information. This allows to reduce the number of time-consuming Fourier-encoding step
Software engineers often have to estimate the performance of a software system before having full knowledge of the system parameters, such as workload and operational profile. These uncertain parameters inevitably affect the accuracy of quality evalu
Wave-CAIPI MR imaging is a 3D imaging technique which can uniformize the g-factor maps and significantly reduce g-factor penalty at high acceleration factors. But it is time-consuming to calculate the average g-factor penalty for optimizing the param
An optimal data partitioning in parallel & distributed implementation of clustering algorithms is a necessary computation as it ensures independent task completion, fair distribution, less number of affected points and better & faster merging. Though
Due to the presence of metallic implants, the imaging quality of computed tomography (CT) would be heavily degraded. With the rapid development of deep learning, several network models have been proposed for metal artifact reduction (MAR). Since the